位置:成果数据库 > 期刊 > 期刊详情页
多智能体入侵杂草算法
  • ISSN号:1001-3695
  • 期刊名称:《计算机应用研究》
  • 时间:0
  • 分类:TP181[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]上海理工大学管理学院,上海200093, [2]上海期货交易所,上海200122
  • 相关基金:国家自然科学基金资助项目(71271138);国家教育部人文社会科学规划基金项目(10YJA630187);上海市教育委员会科研创新项目(12ZSl33);上海市一流学科建设项目(S1201YLXK)
中文摘要:

针对标准入侵杂草算法缺乏信息共享机制的缺陷,将多智能体系统融入标准入侵杂草算法,提出了一种新的多智能体入侵杂草算法。该算法通过多智能体系统中改进的邻域竞争合作算子实现个体间信息的交流,提高收敛速率;利用多智能体系统中的自学习算子增强算法求解精度。五个基准函数测试对比分析结果表明,多智能体入侵杂草算法的求解精度、收敛速度和稳定性优于标准入侵杂草算法、粒子群算法和差分进化算法。

英文摘要:

Concerning absence of information exchange in basic invasive weed optimization,this paper proposed a new multi- agent invasive weed optimization algorithm by introducing muir-agent system. The modified competition & cooperation operator of muh-agent system was to boost the population' s communication and elevated the cgnvergence speed. Besides this,it de- signed the self-study operator to improve the solution quality. The comparative experiments have been conducted on five bench- mark test functions, to conclude that the multi-agent invasive weed optimization algorithm outperforms IWO, PSO and DE algo- rithm in convergence quality, speed and stability.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049