位置:成果数据库 > 期刊 > 期刊详情页
改进线性邻近点传播在时间序列分类中的运用
  • ISSN号:1002-8331
  • 期刊名称:《计算机工程与应用》
  • 时间:0
  • 分类:TP311[自动化与计算机技术—计算机软件与理论;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]大连理工大学计算机科学与技术学院,辽宁大连116023
  • 相关基金:国家自然科学基金(No.60873054 No.60973068); 2009年大学生创新项目国家级项目(No.2009013)
中文摘要:

线性邻近点传播(LNP)是一种非常有效的基于图的半监督分类方法,而类重叠与数据分布不平衡问题会使LNP构造图时由于选择的邻居不合理而影响分类性能。采用谱聚类来分析数据的分布,根据聚类结果对邻居选择时的距离度量进行调整,使得选择的邻居更合理。将基于谱聚类的LNP方法应用于时间序列分类,在UCR时间序列挖掘库的四个数据集上进行实验,结果表明该方法比LNP方法具有更高的分类准确率。

英文摘要:

Linear Neighborhood Propagation(LNP)is a very effectively graph-based semi-supervised classification method.However,different class overlapping and data distributed imbalance cause the choice of the neighbors to be unreasonable when constructing the graph in LNP.This paper applies spectral clustering to analyzing the data's distribution,adjusts the distance metric in the choice of neighbors to make the neighbors more reasonable according to the clustering result.LNP method based on spectral clustering is applied to the time series classification.Using four time series datasets from UCR time series data mining archive,the experimental results show that spectral clustering based LNP acquires higher accuracy than LNP.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程与应用》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华北计算技术研究所
  • 主编:怀进鹏
  • 地址:北京市海淀区北四环中路211号北京619信箱26分箱
  • 邮编:100083
  • 邮箱:ceaj@vip.163.com
  • 电话:
  • 国际标准刊号:ISSN:1002-8331
  • 国内统一刊号:ISSN:11-2127/TP
  • 邮发代号:82-605
  • 获奖情况:
  • 1. 2012年首批获得中国学术文献评价中心发布的 “...,2. 2001年获得新闻出版署“中国期刊方阵双效期刊”,3. 2008年首批入选国家科技部“中国精品科技期刊...,4.2003年-2011年连续获得工业和信息化部期刊最高...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:97887