位置:成果数据库 > 期刊 > 期刊详情页
混合滤波去噪与微粒群算法优化的辨识方法
  • ISSN号:1006-2467
  • 期刊名称:《上海交通大学学报》
  • 时间:0
  • 分类:TP212[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]南京师范大学数学与计算机科学学院,南京210042, [2]南京师范大学电气与自动化工程学院,南京210042
  • 相关基金:国家自然科学基金资助项目(60774060);江苏省高校自然科学基金资助项目(06KJD520099)
中文摘要:

针对实际系统信号中不可避免会存在噪声和瞬时扰动,提出了多项式预测与中值滤波相结合的混合实时滤波算法,消除噪声污染.对于去噪后的数据,由于包含瞬时扰动,故用最小二乘辨识算法仍然不能获得满意的结果.为此,在混合滤波去噪的基础上,采用了一种用微粒群算法优化的最小绝对误差辨识算法.仿真实验表明,所提出的方法能够同时克服噪声和瞬时扰动的不利影响,并能获得较好的辨识结果.

英文摘要:

Additive noise and instantaneous disturbance may produce adverse influences to system identification. However, an output of a real system is often affected by both noise and disturbance. To reduce these disadvantageous influences, a hybrid filter that combines polynomial prediction filter and median filter for denoising was employed. After the output signal is denoised by the hybrid filter, the identification results obtained by employing the least squares identification method are still unsatisfactory due to instantaneous disturbances. Hence, an identification algorithm based on the hybrid filter and least absolute errors optimized by swarm optimization was proposed. The simulation study shows that the presented approach can overcome the influences of noise and disturbance simultaneously.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《上海交通大学学报》
  • 中国科技核心期刊
  • 主管单位:中华人民共和国教育部
  • 主办单位:上海交通大学
  • 主编:郑杭
  • 地址:上海市华山路1954号15F
  • 邮编:200030
  • 邮箱:shjt@chinajournal.net.cn
  • 电话:021-62933373 62932534
  • 国际标准刊号:ISSN:1006-2467
  • 国内统一刊号:ISSN:31-1466/U
  • 邮发代号:4-256
  • 获奖情况:
  • 1996年全国优秀科技期刊奖,1992年、1996年、1999年国家教育部系统优秀科技期刊奖,2002年“百种重点期刊奖”,2003年百种中国杰出学术期刊,2004年教育部全国高校优秀科技期刊一等奖,2004年“百种重点期刊奖”
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:30903