位置:成果数据库 > 期刊 > 期刊详情页
一种新的选择性神经网络集成方法及其在PTA中的应用
  • ISSN号:0438-1157
  • 期刊名称:《化工学报》
  • 时间:0
  • 分类:TP183[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]北京化工大学信息科学与技术学院,北京100029
  • 相关基金:国家自然科学基金项目(60774079);国家高技术研究发展计划项目(2007AA04Z170);中石化科学技术研究开发项目(205073).
中文摘要:

神经网络集成可以显著提高神经网络的泛化性能。传统的集成方法中大都采用将训练的所有网络直接进行组合的方式形成集成网络,而实际上这些网络可能具有一定的相关性。为此,选择性神经网络集成成为目前研究的热点,它能够进一步提高集成网络的泛化性能。本文提出了一种利用网络权值计算网络模型之间差异度的新的选择性神经网络集成方法DWSEN。UCI数据测试表明,与流行的集成方法Bagging和Boosting比较,本方法有着更好的泛化能力和稳定性。将DWSEN应用于精对苯二甲酸(PTA)溶剂系统脱水塔装置的建模过程,结果显示,利用该方法训练得到的集成模型具有更好的泛化性能,能够较好地模拟生产运行过程。

英文摘要:

Neural network ensemble could dramatically improve the generalization performance of neural network. In traditional ensemble processes, all the trained networks are directly combined to the integrated network. However, these networks may have certain correlation in fact. Therefore, selective neural network ensemble has become a hot issue recently, by which the generalization ability of neural network ensemble can be further improved. Thus, the authors propose a new selective constructing approach to neural network ensemble named DWSEN through measuring the diversity of individuals according to weights of networks. Compared with some prevailing ensemble approaches such as Bagging and Boosting, testing of UCI data sets illustrated that the DWSEN approach has higher generalization ability and stronger stability. This method is further validated by the modeling of solvent dehydration tower of purified terephthalic acid (PTA) solvent system. Case study shows that the obtained model has better generalization performance, and can simulate the production process better.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《化工学报》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国化工学会 化学工业出版社
  • 主编:李静海
  • 地址:北京市东城区青年湖南街13号
  • 邮编:100011
  • 邮箱:hgxb126@126.com
  • 电话:010-64519485
  • 国际标准刊号:ISSN:0438-1157
  • 国内统一刊号:ISSN:11-1946/TQ
  • 邮发代号:2-370
  • 获奖情况:
  • 中国科协优秀期刊二等奖,化工部科技进步二等奖,北京全优期刊奖,中国期刊方阵“双效”期刊,第三届中国出版政府奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:35185