针对狼群算法(WPA)收敛速度慢且易陷入局部最优解的问题,提出一种差分进化狼群算法(DE—WPA)并将其应用于全球导航卫星系统欺骗干扰检测中。将非线性干扰机/卫星发射机和无线信道综合建模为Hammerstein模型,通过DE—WPA辨识该模型参数并以模型参数为特征向量进行欺骗干扰检测。仿真结果验证了DE—WPA在Hammerstein模型系统辨识上的有效性,而且相对于最小二乘估计法、经典迭代法和基本WPA算法,DE—WPA算法具有更高的模型参数辨识精度和欺骗干扰识别率。
Since the Wolf Pack Algorithm(WPA) has some demerits,such as slow convergence and being easy to trap in local optimum, a Differential Evolution-Wolf Pack Algorithm(DE-WPA) is proposed and applied in spoofing jamming detection for Global Navigation Statellite System(GNSS). A Hammerstein model is applied to establish the model of the nonliner jammer or the satellite transmitter and the wireless channel at first. Then the DE-WPA is utilized to estimate parameters of the model. Next, a method is employed to identify the spoofing jamming with the estimated model parameters. Simulation results show that the DE-WPA is effective for the Hammerstein model system identification. It can obtain higher model parameter identification precision and deception jamming recognition rate than the Least Square(LS) estimation algorithm,the iterative algorithm and WPA algorithm.