设,(哟是非负函数,k,b,si,ti(i=1,2,…)是正常数,研究形如[α0,α1,α2,…][kn+b]n=0,^-∞和[sn,f(n),tn]n=1^-,∞,的连分数有理逼近的下界.
Let f(n) be a nonnegative function, and k, b, si and ti(i = 1,2,...) positive constants. We discuss the lower bound of rational approximations to two kinds of continued fractions such as [α0,α1,α2,…][kn+b]n=0,^-∞ and [sn,f(n),tn]n=1^-,∞