位置:成果数据库 > 期刊 > 期刊详情页
基于RapidEye卫星和面向对象方法的南方山区居民地提取
  • ISSN号:1007-6301
  • 期刊名称:《地理科学进展》
  • 时间:0
  • 分类:P[天文地球]
  • 作者机构:[1]中国科学院地理科学与资源研究所,资源与环境信息系统国家重点实验室,北京100101, [2]中国科学院大学,北京100049, [3]江苏省地理信息资源开发与利用协同创新中心,南京210023
  • 相关基金:National Natural Science Foundation of China (41301474), National Science & Technology Infrastructure Work Special Projects of China (2011FY 110400, 2013FY 114600) and the China Postdoctoral Science Foundation (2013M530708, 2014T70114).Acknowledgments We wish to thank National Data Sharing infrastructure of Earth System Science (http://www.geodata.cn) for providing the RapidEye data, and would like to express our appreciation to colleagues in our laboratory for their valuable comments and other assistance. We kindly acknowledge Jarvis A., H.I. Reuter, A. Nelson, and E. Guevara from the International Centre for Tropical Agriculture (CIAT), which provided the hole-filled seamless SRTM data V4. This can be downloaded free of charge from the website http://srtm.csi, cgiar.org. We would like to thank Editage (http://www. editage.cn) for English language editing.
中文摘要:

在中国快速城市化进程中,农村居住人口减少的同时居住用地却呈增加趋势,这一现象在南方山区尤为明显。利用遥感技术进行农村居民地信息的提取与分析具有重要意义。本研究选取江西省泰和县为典型研究区,基于RapidEye卫星影像,利用面向对象的分类方法进行居民地的分类提取。构建的分类规则集包括归一化植被指数NDVI、归一化水体指数NDWI、亮度以及长/宽比。通过多次实验,图像的最佳分割尺度设置为200。通过设置不同的分类规则参数,提取了研究区的居民地及其他土地利用类型,并进行分类结果验证和精度评价。研究区的居民地分类总体精度为78.40%,生产者精度和用户精度分别为68.75%和77.33%。结果表明通过利用面向对象的分类方法,RapidEye卫星影像为农村居民地信息提取提供了适宜数据源。与第二次全国土地调查结果相比,存在93.67公顷的分类差异,主要分布在居民地与其他土地利用类型的毗邻地区。

英文摘要:

The process of rapid urbanization in China features two opposing trends: declining rural population and increasing rural residential land, especially in southern hilly areas. The extraction and analysis of residential land in rural China represents an important application for remote sensing technology. The study aimed to discover rural residential land information using RapidEye satellite imagery, taking Taihe County as the research area in the hilly region of southern China. Based on multiple experiments, classification was conducted with an optimal image segmentation scale set to 200. The object-oriented classification rule set was constructed using the customized parameters NDVI, NDWI, brightness, and length/width. The areas of residential land and other land use types were interpreted by varying the parameter values for classification rule sets. Finally, validation and accuracy evaluations were carried out. The overall accuracy of residential land interpretation is 78.40%, and producer's accuracy and user's accuracy are 68.75% and 77.33%, respectively. The results indicate that RapidEye provides a suitable data source for extraction of rural residential land using an object-oriented approach. Compared with the second national land survey of China, the classification gave an absolute difference of 93.67 ha residential land within the study area. Recognition errors occurred mainly in regions adjacent to the boundaries between residential land and other types of land.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《地理科学进展》
  • 北大核心期刊(2011版)
  • 主管单位:中科院出版委员会
  • 主办单位:中国科学院地理科学与资源研究所
  • 主编:李秀彬
  • 地址:北京安外大屯路甲11号917大楼
  • 邮编:100101
  • 邮箱:editor@progressingeograply.com
  • 电话:010-64889313
  • 国际标准刊号:ISSN:1007-6301
  • 国内统一刊号:ISSN:11-3858/P
  • 邮发代号:2-940
  • 获奖情况:
  • 全国中文核心期刊
  • 国内外数据库收录:
  • 日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:30394