A Combinatorial Condition and Boolean Functions with Optimal Algebraic Immunity
- ISSN号:1009-6124
- 期刊名称:《系统科学与复杂性学报:英文版》
- 时间:0
- 分类:O153.2[理学—数学;理学—基础数学] G633.62[文化科学—教育学]
- 作者机构:[1]Key Laboratory of System and Control, Academy of Mathematics and Systems Science, Chinese Academy ofSciences, Beijing 100190, China, [2]Key Laboratory of Mathematics Mechanization, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China, [3]State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences, Beijing 100093, China
- 相关基金:supported by the National Basic Research Program of China under Grant No.2011CB302400.
关键词:
布尔函数, 代数, 组合条件, 免疫, 非线性, 无限级, 平衡, 无穷, Algebraic degree,algebraic immunity,balancedness,Bent function,Boolean function,nonlinearity.
中文摘要:
这份报纸首先建议 2k 变量的一个无限的班有高非线性和高代数学的度的布尔功能。然后,平衡布尔功能的一个无限的班被修改上述布尔功能建议。平衡布尔函数的这个类有最佳的代数学的度和高非线性。两个班基于一个将军有最佳的代数学的免疫组合推测。
英文摘要:
This paper first proposes an infinite class of 2k-variable Boolean functions with high nonlinearity and high algebraic degree. Then an infinite class of balanced Boolean functions are proposed by modifying the above Boolean functions. This class of balanced Boolean functions have optimal algebraic degree and high nonlinearity. Both classes have optimal algebraic immunity based on a general combinatorial conjecture.