针对污水处理中溶解氧质量浓度无法在线精确测量的问题,提出基于粒子群算法优化支持向量回归机(PSO-SVR)的溶解氧质量浓度软测量模型.为了提高溶解氧的预测精度和效率,采用粒子群算法对支持向量回归机的模型参数进行优化,并以自动获取的最佳参数组合构建溶解氧与其影响因子间的非线性软测量模型,利用该软测量模型对国际基准仿真模型BSM1的溶解氧质量浓度进行预测.仿真结果表明:该模型能得到较好的预测效果,与SVR、RBF神经网络相比,PSO-SVR模型不仅计算复杂度低,而且收敛速度快,预测精度高,泛化能力强.