设G是群,kG是域k上的群代数.对任意Hopf箭向Q=(G,r),利用右KZu(c)-模的直积范畴ПMkzu(c)与kG—Hopf双模范畴kGKGM^kGkG之间的同构,可由u(c)(kQ1)1上的右KZu(c)-模结构导出在箭向余模kQ1上的kG—Hopf双模结构.该文讨论在群G分别是2阶循环群与克莱茵四元群时的Hopf路余代数kQ^c的同构分类及其子Hopf代数kG[kQ1]结构.
Let G be a group and kG be the that the kG-Hopf bimodule category KKGkM^KGKG group algebra of G over a field k. It is well known is equivalent to the direct category ПMkzu(c). For any Hopf quiver Q = (G, r), the kG-Hopf bimodule structures on the arrow comodule kQ1 can be derived from the right kZu(c)-module structures on u(C)(kQ1)^1. In this paper, the author discusses the isomorphic classification of Hopf path coalgebra kQc and the structures of Hopf subalgebra of kG[kQ1] of kQ^c in case G is a cyclic group and G is a Klein quaternion group, respectively.