位置:成果数据库 > 期刊 > 期刊详情页
基于MQPSO—LQPSO的RBF神经网络训练方法
  • ISSN号:1004-373X
  • 期刊名称:《现代电子技术》
  • 时间:0
  • 分类:TP181[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]空军工程大学理学院,陕西西安710051
  • 相关基金:国家自然科学基金资助项目(60573040)
中文摘要:

带有局部搜索的量子粒子群算法是一种较为成功的改进型量子粒子群算法。将该算法用于RBF神经网络的结构优化和参数优化,在确定网络参数的同时也确定了网络的结构。在函数逼近上的仿真实验表明,这种优化是有效的。

英文摘要:

Quantum- Behaved Particle Swarm Optimization with Generalized Local Search Operator(MQPSO -LQPSO) is a very successful algorithm of modified QPSO. This algorithm is used to find the best structure and parameters of RBF neural network. They are both determined when finishing training. Experiments on functional approach show this method is effective.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《现代电子技术》
  • 北大核心期刊(2014版)
  • 主管单位:陕西省信息产业厅
  • 主办单位:陕西电子杂志社 陕西省电子技术研究所
  • 主编:张郁(执行)
  • 地址:西安市金花北路176号陕西省电子技术研究所科研生产大楼六层
  • 邮编:710032
  • 邮箱:met@xddz.com.cn
  • 电话:029-93228979
  • 国际标准刊号:ISSN:1004-373X
  • 国内统一刊号:ISSN:61-1224/TN
  • 邮发代号:52-126
  • 获奖情况:
  • 中国科技核心期刊
  • 国内外数据库收录:
  • 波兰哥白尼索引,中国中国科技核心期刊,中国北大核心期刊(2014版)
  • 被引量:37245