利用简单的热氧化法制备了具有微/纳双尺度粗糙结构的多孔Ti表面,经自组装分子膜修饰后使纯Ti表面实现了超疏水特性.利用XRD,FE-SEM,XPS,光学视频接触角仪、腐蚀溶液浸泡及动电位极化法对TO~OTS超疏水膜进行表征及分析.结果表明:热氧化后的微/纳双尺度粗糙结构赋予TO—OTS优越的低黏附超疏水性能,其静态接触角达166.0°,滚动角低至2.0°,对强酸强碱溶液和某些盐溶液都具有超疏性,更可抵抗氢氟酸溶液对Ti基底的腐蚀.动电位极化分析结果显示,TO~OTS超疏水膜显著提高了Ti在3.5%NaCl溶液中的耐腐蚀性能,保护效率达到99.1%.
Ti and its alloys, due to their good stability and high strength-to-density ratio, have been widely used in many industry fields, such as aviation, navigation, biomedical devices, etc. It is quite necessary to improve their performance against corrosion of water pollution or other corrosive mediums in these fields. The process of thermal oxidation is an effective way to enhance their corrosion resistance while high-temperature oxidation is usually thought to have detrimental effects. However, the porous structure caused by high-temperature oxidation is found to be beneficial for preparation of superhydrophobic surface, which has gotten extensive application in improvement of metals' antcorrosion ability. In this study, a rough surface with hierarchical micro- and nano-structures was formed on Ti by a heat treatment process in atmospheric environment at 1000 ℃ for 1 h. The following air-cooling process separated the flaky yellow oxide layer formed on Ti plate during the oxidation from the substrate and a grey porous substrate (TO) was obtained. Furthermore, TO was modified with n-octadecyltrichlorosilane (OTS), leading to the formation of superhydrophobic Ti surface (TO-OTS). The TO-OTS film exhibited a static contact angle of 166.0° and a rolling angle of 2.0° for 5 μL water droplets. The as-prepared film was characterized by XRD, FE-SEM, XPS and contact angle measurements. The results indicated that dual-scale roughness leaved by thermal oxidation endowed TO-OTS with excellent non-sticking superhydrophobicity and durability, even for some corrosive liquids including salt solution and acidic and alkali solutions at different pH values.By means of immersion test, TO-OTS displayed great non corrodibility against HF solution, with a protective mirror-like air film formed above it. Moreover, based on potentiodynamic polarization measurement in 3.5%NaC1 solution, the corrosion resistance of TO-OTS was proved to have a signif- icant enhancement with a protection efficiency of 99.1%. This is a facile