本文研究由两个供应互补中间产品的上游子公司和一个组装生产最终产品的下游子公司组成的集团公司内部的转移价格问题。这里,其中一个上游子公司的原料在成本上具有规模经济,并且下游组装子公司面临的是一个价格敏感型的确定性需求。利用博弈论的方法,研究了各种不同的联盟结构下各个子公司和集团公司的利润。结果表明,在大联盟结构下,集团公司的利润是最高的。为了分配大联盟结构下集团公司总的利润,本文构造了特征函数具有超模性质的合作博弈,证明了Shapley值是在合作博弈的核中。最后基于Shapley值分配方法给出了集团公司内部的转移价格。
The transfer pricing decision for a group company with two upstream divisions and a downstream division is considered in this paper, where the two upstream divisions sell two complementary components to a downstream assembler, and then the downstream assembler sells products to the market. One of the upstream divisions has economies of scale for raw materials in cost and the downstream division faces a price-sensitive deterministic demand. Using the method of game theory, we study the profits of divisions and group company under all kinds of alliance structures. The results show that the profit of the group company is highest in the grand coalition structure. To allocate the group-wide profit between upstream and downstream divisions, we construct a cooperative game, show the supermodular of the game, and prove that the Shapley value is in the core of this cooperative game. Finally, we compute the Shapley value-based transfer prices for the group company.