位置:成果数据库 > 期刊 > 期刊详情页
Coupled electrophysiological recording and single cell transcriptome analyses revealed molecular mechanisms underlying neuronal maturation
  • 时间:0
  • 分类:Q255[生物学—细胞生物学] TP18[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China, [2]Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA, [3]Institute of Neurobiology, Institute of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China, [4]Collaborative Innovation Center for Brain Science, Tongji University, Shanghai 200092, China
  • 相关基金:The online version of this article (doi:10.1007/s13238-016-0247-8) contains supplementary material, which is available to authorized users.This work was supported by the National Basic Research Program (973 Program) (No. 2012CB966303), the National Natural Science Foundation of China (Grant Nos. 81330030, 91319309, and 31271371), the Science and Technology Department of Yunnan Province (Grant 2012HA013), the Yunnan Basic Research Projects (Grant 2014FC004), and the Doctoral Tutor of Education Department of Shanghai, China (Grant 20130072110021 ), grants from NASAD: BRN & BEHV RES FND 23072, NIH R21:IR21NS095184-01 and finally, a fellowship from China Scholarship Council to X. -Y.C.
中文摘要:

哺乳动物的大脑是异构的,包含形成各种各样的神经电路,感觉,运动,思维,和情感通过产生的触处的十亿个神经原和万亿。大脑的细胞的异质使学习神经电路配线的分子的逻辑困难,修剪,直到最近, transcriptome 与分辨率使基因译码规章的单个房间分析的激活,和粘性联网可能的内在的上述的电路性质。这里,我们在在文化在单个人的神经原上执行 electrophysiological 和整个染色体的 transcriptome 分析报导成功。用加权的基因 Coexpression 网络分析(WGCNA ) ,我们鉴别基因簇高度相关, neuronal 成熟由 electrophysiological 特征判定了。在涉及 ubiquitination 和 mitochondrial 功能的 neuronal 成熟和基因之间的一个紧密的连接被揭示。而且,我们识别了候选人基因的一张表,它能潜在地为 neuronal 成熟用作 biomarkers。联合 electrophysiological 记录和单个房间 transcriptome 分析将在未来用作强大的工具为神经电路功能揭开分子的逻辑。

英文摘要:

The mammalian brain is heterogeneous, containing billions of neurons and trillions of synapses forming vari- ous neural circuitries, through which sense, movement, thought, and emotion arise. The cellular heterogeneity of the brain has made it difficult to study the molecular logic of neural circuitry wiring, pruning, activation, and plasticity, until recently, transcriptome analyses with single cell resolution makes decoding of gene regulatory networks underlying aforementioned circuitry properties possible. Here we report success in per- forming both electrophysiological and whole-genome transcriptome analyses on single human neurons in culture. Using Weighted Gene Coexpression Network Analyses (WGCNA), we identified gene clusters highly correlated with neuronal maturation judged by electrophysiological characteristics. A tight link between neu- ronal maturation and genes involved in ubiquitination and mitochondrial function was revealed. Moreover, we identified a list of candidate genes, which could potentially serve as biomarkers for neuronal maturation. Coupled electrophysiological recording and single cell transcriptome analysis will serve as powerful tools in the future to unveil molecular logics for neural circuitry functions.

同期刊论文项目
同项目期刊论文