位置:成果数据库 > 期刊 > 期刊详情页
Numerical simulation and temporal characterization of dual-pumped microringresonator-based optical frequency combs
  • ISSN号:2327-9125
  • 期刊名称:《光子学研究:英文版》
  • 分类:TN629.1[电子电信—电路与系统]
  • 作者机构:State Key Laboratory of Transient Optics and Photonics,Xi’an Institute of Optics and Precision Mechanics,Chinese Academy of Science, University of Chinese Academy of Sciences, China-UK Joint Research Center on Micro/Nano Photonics,Xi’an Institute of Optics and Precision Mechanics,Chinese Academy of Science
  • 相关基金:Strategic Priority Research Program of the Chinese Academy of Sciences(CAS)(XDB 24030600);National Key Research and Development Program of China(2016YFF0200702);National Natural Science Foundation of China(NSFC)(61690222,61308037,61635013);CASSAFEA International Partnership Program for Creative Research Teams
中文摘要:

Dual-pumped microring-resonator-based optical frequency combs(OFCs) and their temporal characteristics are numerically investigated and experimentally explored. The calculation results obtained by solving the driven and damped nonlinear Schr?dinger equation indicate that an ultralow coupled pump power is required to excite the primary comb modes through a non-degenerate four-wave-mixing(FWM) process and, when the pump power is boosted, both the comb mode intensities and spectral bandwidths increase. At low pump powers, the field intensity profile exhibits a cosine variation manner with frequency equal to the separation of the two pumps, while a roll Turing pattern is formed resulting from the increased comb mode intensities and spectral bandwidths at high pump powers. Meanwhile, we found that the power difference between the two pump fields can be transferred to the newly generated comb modes, which are located on both sides of the pump modes, through a cascaded FWM process. Experimentally, the dual-pumped OFCs were realized by coupling two self-oscillating pump fields into a microring resonator. The numerically calculated comb spectrum is verified by generating an OFC with 2.0 THz mode spacing over 160 nm bandwidth. In addition, the formation of a roll Turing pattern at high pump powers is inferred from the measured autocorrelation trace of a 10 free spectral range(FSR) OFC. The experimental observations accord well with the numerical predictions. Due to their large and tunable mode spacing, robustness,and flexibility, the proposed dual-pumped OFCs could find potential applications in a wide range of fields,including arbitrary optical waveform generation, high-capacity optical communications, and signal-processing systems.

英文摘要:

Dual-pumped microring-resonator-based optical frequency combs (OFCs) and their temporal characteristics are numerically investigated and experimentally explored. The calculation results obtained by solving the driven and damped nonlinear Schrodinger equation indicate that an ultralow coupled pump power is required to excite the primary comb modes through a non-degenerate four-wave-mixing (FWM) process and, when the pump power is boosted, both the comb mode intensities and spectral bandwidths increase. At low pump powers, the field intensity profile exhibits a cosine variation manner with frequency equal to the separation of the two pumps, while a roll Turing pattern is formed resulting from the increased comb mode intensities and spectral bandwidths at high pump powers. Meanwhile, we found that the power difference between the two pump fields can be transferred to the newly generated comb modes, which are located on both sides of the pump modes, through a cascaded FWM process. Experimentally, the dual-pumped OFCs were realized by coupling two self-oscillating pump fields into a microring resonator. The numerically calculated comb spectrum is verified by generating an OFC with 2.0 THz mode spacing over 160 nm bandwidth. In addition, the formation of a roll Turing pattern at high pump powers is inferred from the measured autocorrelation trace of a 10 free spectral range (FSR) OFC. The experimental observations accord well with the numerical predictions. Due to their large and tunable mode spacing, robustness, and flexibility, the proposed dual-pumped OFCs could find potential applications in a wide range of fields, including arbitrary optical waveform generation, high-capacity optical communications, and signal-processing systems. (C) 2017 Chinese Laser Press

同期刊论文项目
同项目期刊论文
期刊信息
  • 《光子学研究:英文版》
  • 主管单位:
  • 主办单位:中国科学院上海光学精密机械研究所
  • 主编:
  • 地址:上海市
  • 邮编:
  • 邮箱:
  • 电话:021-
  • 国际标准刊号:ISSN:2327-9125
  • 国内统一刊号:ISSN:31-2126/O4
  • 邮发代号:
  • 获奖情况:
  • 国内外数据库收录:
  • 被引量:1