位置:成果数据库 > 期刊 > 期刊详情页
基于可见-近红外光谱的咖啡品牌鉴别研究
  • ISSN号:1000-0593
  • 期刊名称:《光谱学与光谱分析》
  • 时间:0
  • 分类:TH744.1[机械工程—光学工程;机械工程—仪器科学与技术;机械工程—精密仪器及机械] S572[农业科学—烟草工业;农业科学—作物学]
  • 作者机构:[1]浙江大学生物系统工程与食品科学学院,浙江杭州310029
  • 相关基金:国家自然科学基金项目(30671213),国家科技支撑项目(2006BAD10A04)和高等学校优秀青年教师教学科研奖励计划(02411)资助
中文摘要:

利用可见-近红外光谱技术对市场上三种不同品牌咖啡品种进行鉴别。分别采用主成分分析法与BP神经网络结合和小波变换与BP神经网络结合两种组合模型进行分析预测。利用主成分分析法与小波变换的数据压缩功能和BP神经网络的学习预测能力实现对不同品牌咖啡的鉴别。实验采用3个品种共60个样本建立模型,30个样本进行品种鉴别,结果表明,两种鉴别模型的咖啡品种鉴别率均为100%。同时也表明,小波变换用于数据压缩无论是在压缩时间上还是在压缩能力上都优于主成分分析法。说明通过小波变换和BP神经网络相结合建立模型进行不同品牌咖啡鉴别具有分析速度快,鉴别能力强的特点,为快速鉴别纯品咖啡提供了新的方法,同时也为确定不同品牌咖啡选用咖啡豆品种奠定了基础。

英文摘要:

Near infrared spectroscopy technology was used to distinguish three different brands of coffee bought from the supermarket. Two models, PCA-BP and WT-BP, were employed for the analysis and prediction of the samples. The discrimination among the different brands of coffee was based on the combination of the function of data compression in the PCA and WT technology and the ability of learning and prediction of the artificial neural network. In the experiment, 60 samples were used for model calibration and 30 for brand prediction. The result showed that both the PCA-BP and WT-BP models achieved 100% discrimination rate, and the wavelet transforms technology is superior to the principal component analysis both in time-consuming and the capability of data compression. It is indicated that the model set up by the combination of WT technology and BP neural network in the present study is rapid in analysis and precise in pattern discrimination. It can be concluded that a new approach to distinguishing pure coffee was of fered and the result of this experiment established the foundation for the determination of the raw material (coffee bean) of different brands of coffee in the market.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《光谱学与光谱分析》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国光学学会
  • 主编:高松
  • 地址:北京海淀区魏公村学院南路76号
  • 邮编:100081
  • 邮箱:chngpxygpfx@vip.sina.com
  • 电话:010-62181070
  • 国际标准刊号:ISSN:1000-0593
  • 国内统一刊号:ISSN:11-2200/O4
  • 邮发代号:82-68
  • 获奖情况:
  • 1992年北京出版局编辑质量奖,1996年中国科协优秀科技期刊奖,1997-2000获中国科协择优支持基础性高科技学术期刊奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国生物医学检索系统,美国科学引文索引(扩展库),英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),英国英国皇家化学学会文摘,中国北大核心期刊(2000版)
  • 被引量:40642