位置:成果数据库 > 期刊 > 期刊详情页
基于跨本体语义相关的三维模型检索方法
  • ISSN号:1001-0548
  • 期刊名称:《电子科技大学学报》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]山东师范大学信息科学与工程学院,济南250014, [2]山东省分布式计算机软件新技术重点实验室,济南250014
  • 相关基金:国家自然科学基金(61272094,61472232);山东省高等学校科技计划(J13LNl3,J14LN55)
中文摘要:

针对某些特定领域的建模中单一的语义检索条件无法得到理想的检索结果,提出了基于跨本体的语义相关度进行检索的算法。首先构建相关领域的本体,然后对已有实例进行分析,通过聚类算法找出模型本体间具有相关性的属性。再通过调查获取用户对实例的评价数据,对深度信念网络进行训练,求出本体间相关语义属性的相关度权值。最终对模型库中的模型计算与检索模型间的相关度作为检索条件,将大于一定阈值的模型作为检索结果。应用该算法,用户一般在检索首页可以找到较满意的模型,大大缩短了检索的时间。

英文摘要:

In some specific areas, a single condition of semantic retrieval cannot have the ideal results. A retrieval algorithm based on semantic correlation between different ontologies is presented. The algorithm firstly builds the domain ontology, and then analyzes the existing instances to find out the semantic correlation among ontologies by clustering algorithm. Besides, the evaluation data of the user of the instance which is obtained by the survey is used as the sample, with which the deep belief network (DBN) is trained to obtain the weights of correlation between semantics of different ontologies. Finally, the relevancy between the retrieved models and the model in database is computed and the models with higher relevancy are used as the retrieval results. With the retrieval algorithm, the designer can get more satisfactory model in retrieval homepage, which greatly shortens the retrieval time.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《电子科技大学学报》
  • 北大核心期刊(2011版)
  • 主管单位:国家教育部
  • 主办单位:电子科技大学
  • 主编:周小佳
  • 地址:成都市成华区建设北路二段四号
  • 邮编:610054
  • 邮箱:xuebao@uestc.edu.cn
  • 电话:028-83202308
  • 国际标准刊号:ISSN:1001-0548
  • 国内统一刊号:ISSN:51-1207/T
  • 邮发代号:62-34
  • 获奖情况:
  • 全国优秀科技期刊,第二届全国优秀科技期刊二等奖,两次获国家新闻出版署、国家教委“全国高校自然科...,中国期刊方阵双百期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:12314