对具有非线性源项和非线性扩散项的热传导方程建立格子Boltzmann求解模型.在演化方程中增加了两个关于源项分布函数的微分算子,对演化方程实施Chapman-Enskog展开.通过对演化方程的进一步改进,恢复出具有高阶截断误差的宏观方程.对不同参数选取下的非线性热传导方程进行了数值模拟,数值解与精确解吻合得很好.该模型也可以用于同类型的其他偏微分方程的数值计算中.
A lattice Boltzmann model for the heat conduction equation with a nonlinear source term and a nonlinear diffusion term was presented. 2 differential operators related to the source term distribution function were added to the evolution equation, on which the Chapman-Enskog expansion was carried out. Then, through some further improvement of the evolution equation the macroscopic differential equation was recovered in 2 schemes with high-order truncation errors. Detailed numerical simulations of the nonlinear heat conduction equation with different parameter selections were performed. The numerical results agree well with the exact solutions. This model can also be directly used to numerically solve other partial differential equations in similar forms.