位置:成果数据库 > 期刊 > 期刊详情页
基于人工神经网络的太阳能电池片表面质量检测系统
  • ISSN号:1003-5060
  • 期刊名称:《合肥工业大学学报:自然科学版》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:合肥工业大学机械工程学院,安徽合肥230009
  • 相关基金:安徽省科技攻关计划资助项目(1604a0902182)
中文摘要:

针对依赖人工进行太阳能电池片表面质量检测时效率和精度低的问题,文章提出了基于机器视觉以及人工神经网络的太阳能电池片表面质量检测方法。将表面缺陷分为外形缺陷、颜色缺陷、裂纹以及丝印线路缺陷4类,基于模板匹配检测外形缺陷,基于HIS空间下的颜色直方图检测颜色缺陷;针对细微性缺陷容易受噪声影响的特点,利用2类人工神经网络进行断栅检测,并对这2类神经网络进行比较。大量实验结果验证了上述方法能够准确、快速地检测出太阳能电池片表面缺陷。

英文摘要:

For the low efficiency and precision problem of solar cell surface test relying on manual la- bor, a method of the solar cell surface detection based on maehine vision and artificial neural network is raised. Surface defects are firstly divided into four categories, including appearance defects, color defects, cracks and defects of screen printing line. Then the appearance defects are detected based on template matching and the color detection is realized according to the image of color histogram on HIS space. Finally, for the characteristics of small defects which are easily affected by noise, two types of artificial neural networks are used to detect the broken gate and the two networks are compared. The experimental results show that the presented method can accurately and quickly detect the solar cell surface defects.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《合肥工业大学学报:自然科学版》
  • 中国科技核心期刊
  • 主管单位:中华人民共和国教育部
  • 主办单位:合肥工业大学
  • 主编:何晓雄
  • 地址:合肥市屯溪路193号
  • 邮编:230009
  • 邮箱:XBZK@hfut.edu.cn
  • 电话:0551-2905639
  • 国际标准刊号:ISSN:1003-5060
  • 国内统一刊号:ISSN:34-1083/N
  • 邮发代号:26-61
  • 获奖情况:
  • 1999中国优秀高校自然科学学报,1997华东地区优秀期刊,1998安徽省优秀科技期刊,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,美国剑桥科学文摘,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:19655