A tortuous labyrinth passage consists of a series of right angle turns in a disk of high pressure control valve.In this paper,numerical simulations are made for the velocity and pressure distributions in this passage.It is shown that the 'series passage' can induce a pressure dropping more effectively.The main function of the 'series passage' is to induce a pressure dropping while the 'parallel passage' is mainly to regulate the flow-rate.As a cross sectional area process,a series of reduction and expansion,the pressure will also see dropping and partial recovery,which is called the multistage pressure drop.By this way,the velocity can be controlled in a reasonable level anywhere in this tortuous labyrinth passage.With the fluid pressure dropping in a downwards serrated way,the pressure is higher than the local saturate vapor pressure,therefore,no cavitation is induced by the phase transition.
A tortuous labyrinth passage consists of a series of right angle turns in a disk of high pressure control valve.In this paper,numerical simulations are made for the velocity and pressure distributions in this passage.It is shown that the “series passage” can induce a pressure dropping more effectively.The main function of the “series passage” is to induce a pressure dropping while the “parallel passage” is mainly to regulate the flow-rate.As a cross sectional area process,a series of reduction and expansion,the pressure will also see dropping and partial recovery,which is called the multistage pressure drop.By this way,the velocity can be controlled in a reasonable level anywhere in this tortuous labyrinth passage.With the fluid pressure dropping in a downwards serrated way,the pressure is higher than the local saturate vapor pressure,therefore,no cavitation is induced by the phase transition.