位置:成果数据库 > 期刊 > 期刊详情页
隐目标回归算法设计研究
  • ISSN号:1000-7024
  • 期刊名称:《计算机工程与设计》
  • 时间:0
  • 分类:TP301.6[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]南京林业大学信息科学技术学院,江苏南京210037
  • 相关基金:基金项目:国家自然科学基金项目(60903130);江苏省自然科学基金项目(BK2012815);南京林业大学人才基金项目(B2009-14)
中文摘要:

对常用的回归方法进行研究.此类方法虽然几何解释明确、易于求解,但均须事先确定(或假定)变量间的因果关系,再考虑建模,在实际应用中,对于很难确定变量的因果关系的问题,如物联网数据分析,上述方法就会失效.为此,提出一种无需假定因变量的隐目标回归方法.该方法易于核化,可以推广到非线性回归问题.通过人工数据和国际标准数据集上的实验验证了所提算法的有效性.

英文摘要:

Commonly used regression methods were studied. Although the geometric interpretation of these methods is clear and the methods are easy to solve, a causal relationship must be determined (or assumed) in advance between variables, then the modeling is considered. In specific applications, such as the Internet of things data analysis where the causal relationship between variables is difficult to determine, the above method fails. To solve this problem, an implicit goal regression method without assuming the dependent variable in advance was proposed. This method is easy to nucleate and extendable to nonlinear regression problems. Experimental results on artificial data and international standard data sets verified the effectiveness of the proposed algorithm.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程与设计》
  • 北大核心期刊(2011版)
  • 主管单位:中国航天科工集团
  • 主办单位:中国航天科工集团二院706所
  • 主编:汤铭瑞
  • 地址:北京142信箱37分箱
  • 邮编:100854
  • 邮箱:ced@china-ced.com
  • 电话:010-68389884
  • 国际标准刊号:ISSN:1000-7024
  • 国内统一刊号:ISSN:11-1775/TP
  • 邮发代号:82-425
  • 获奖情况:
  • 中国科学引文数据库来源期刊,中国学术期刊综合评价数据库来源期刊,中国科技论文统计与分析用期刊
  • 国内外数据库收录:
  • 波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:45616