此处,我们为在 2通过超声的混合的 O 3-reduced graphene 氧化物( rGO ) nanocomposite ,在此在 2 O 3 nanoparticles 被把 mesoporous 硅石用作一个难模板经由 nanocasting 线路综合,它与 81m 2 g 1,和 rGO nanosheets 的一个大表面区域拥有订的 mesostructure 经由 graphene 氧化物从石墨被综合(去)同样中间。在结合以后 rGO,在 2 O 3 能维持它的订的 mesostructure。我们随后调查所有的煤气察觉到的性质在里面 2 O 3 标本与或没有为不同气体的 rGO。结果在 2 O 3-rGO nanocomposite 甚至在低集中层次拥有显著地提高的反应到乙醇,在在 2 O 3 nanoparticles。类似的策略能为改进煤气察觉到的性质被扩大到另外的订的 mesoporous 金属 oxiderGO nanocomposite。
Herein, we describe a strategy for fabricating ordered mesoporous In2O3-reduced graphene oxide (rGO) nanocomposite through ultrasonic mixing, where ordered mesoporous In2O3 nanoparticles are synthesized via the nanocasting route by using mesoporous silica as a hard template, which possess ordered mesostructure with a large surface area of 81 m2 g-1, and rGO nanosheets are syn- thesized from graphite via graphene oxide (GO) as inter- mediate. After coupled with rGO, mesoporous In2O3 could maintain its ordered mesostructure. We subsequently investigate the gas-sensing properties of all the In2O3 specimens with or without rGO for different gases. The results exhibit the ordered mesoporous In2O3-rGO nanocomposite possesses significantly enhanced response to ethanol even at low concentration levels, superior over pure mesoporous In2O3 nanoparticles. Similar strategy could be extended to other ordered mesoporous metal oxide-rGO nanocomposite for improving the gas-sensing property.