位置:成果数据库 > 期刊 > 期刊详情页
基于多时相HJ-1B CCD影像的玉米倒伏灾情遥感监测
  • ISSN号:0578-1752
  • 期刊名称:《中国农业科学》
  • 时间:0
  • 分类:S725[农业科学—林木遗传育种;农业科学—林学]
  • 作者机构:[1]河南理工大学测绘与国土信息工程学院,河南焦作454000, [2]国家农业信息化工程技术研究中心,北京100097, [3]农业部农业信息技术重点实验室,北京100097, [4]北京市农业物联网工程技术研究中心,北京100097
  • 相关基金:国家自然科学基金(41571323); 国家公益性行业(农业)科研专项(201303109); 北京市优秀人才青年拔尖个人项目(2014000021223ZK38)
中文摘要:

【目的】通过对倒伏发生前后的多时相HJ-1B卫星CCD多光谱影像植被指数的变化分析,实现区域尺度下的玉米倒伏受灾范围监测和灾情评估。【方法】以2015年8月3日因大风暴雨导致大面积玉米倒伏的河北省藁城市为研究区,提取HJ-1B CCD多光谱影像的多种植被指数,根据多时相植被指数变化量与实测倒伏样本的关联分析,筛选玉米倒伏敏感植被指数,采用正态(偏正态)统计理论的双阈值划分策略划定阈值,构建基于植被指数变化分析的玉米倒伏灾情遥感监测模型,评价玉米倒伏灾情严重程度,并基于野外实测样本进行精度评价。【结果】基于城镇、水体、倒伏与未倒伏玉米的HJ-1B CCD2多光谱反射率曲线可得,玉米与城镇建筑物和水体的光谱反射率存在较大差异,在可见光波段,倒伏玉米要高于未倒伏玉米的反射率,然而在近红外波段(830 nm),未倒伏玉米略高于倒伏玉米的反射率。由已提取出玉米种植区域后的前后两期HJ星的差值影像分析可得其像元整体分布趋势基本符合正态(偏正态)分布。由相关性分析可得,倒伏前后的比值植被指数(RVI)差值与玉米倒伏比例具有最高的相关性(R=0.9377),而且倒伏越严重,其RVI差值越大;通过野外实测样本与模型验证结果进行混淆矩阵分析,总体分类精度达到85.7%,Kappa系数为0.804;研究区玉米倒伏遥感空间制图结果与当地农业技术推广站监测结果基本一致。【结论】倒伏发生后,其玉米长势以及灾后恢复程度均存在较大差异,因此,基于玉米倒伏前后RVI差值的遥感监测模型能有效反映不同倒伏程度的冠层群体变化信息以及长势恢复情况,能在区域尺度下实现玉米倒伏受灾范围监测和灾情等级评估。

英文摘要:

【Objective】The aim of this study is to analyze the variance of a variety of vegetation indices derived from HJ-1B(One of the Small Satellite Constellations for Environment and Disaster Monitoring and Forecasting, HJ-1A/1B/1C) CCD multi-temporal images in pre- and post-lodging, in order to achieve the objective for measuring the area of maize lodging and evaluation of disaster rank. 【Method】This paper took Gaocheng, Hebei Province as a research area where suffered a heavy rainstorm which led to a large-scale maize lodging on August 3rd, 2015. A variety of vegetation indices derived from HJ-1B CCD multi-temporal images in pre- and post-lodging period were adopted to conduct the sensitivity analysis among various vegetation index variations(?VI_i, the value of vegetation index before lodging minus that of after lodging) and the lodging characteristic values measured in field(Lodging proportion for research areas) to seek the preferable vegetation indices for maize lodging monitoring. The double threshold partition strategy of normal statistical theory was adopted to determine the thresholds and a remote sensing monitoring model for maize lodging was built based on the analysis of the difference of vegetation indices pre- and post-lodging to evaluate the disaster degree of the maize lodging. The accurate assessment of the model was conducted by comparing the in-field measured data and predicted results from the built model at last. 【Result】Based on the features of HJ–1B CCD2 multispectral reflectance curve of the town, water, lodging and no lodging maize, there was a difference between maize and building and water in special reflectance. In the visible spectrum, spectral reflectance of lodging maize was higher than that of no lodging maize, therefore, it was opposite in near infrared wave. From the analysis of RVI difference image, it nearly conform to normal distribution(skewed normal distribution). The result of correlation analysis suggested that RVI(ratio vegetation index) had

同期刊论文项目
同项目期刊论文
期刊信息
  • 《中国农业科学》
  • 中国科技核心期刊
  • 主管单位:中华人民共和国农业部
  • 主办单位:中国农业科学院 中国农学会
  • 主编:万建民
  • 地址:北京中关村南大街12号中国农业科学院图书馆楼4101-4103室
  • 邮编:100081
  • 邮箱:zgnykx@caas.cn
  • 电话:010-82109808 82106279
  • 国际标准刊号:ISSN:0578-1752
  • 国内统一刊号:ISSN:11-1328/S
  • 邮发代号:2-138
  • 获奖情况:
  • 中国期刊方阵“双高”期刊,第三届中国出版政府奖提名奖
  • 国内外数据库收录:
  • 美国化学文摘(网络版),英国农业与生物科学研究中心文摘,波兰哥白尼索引,英国动物学记录,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),英国食品科技文摘,中国北大核心期刊(2000版)
  • 被引量:85620