研究了含δ势垒的铁磁/半导体/铁磁异质结中自旋相关的透射概率和渡越时间,讨论了量子尺寸效应和Rashba自旋轨道耦合效应对隧穿特性的影响.研究结果表明:δ势垒的存在降低了自旋电子的透射概率,改变了透射概率的位相.Rashba自旋轨道耦合强度的增加加大了透射概率的振荡频率.不同自旋取向的电子隧穿异质结时,渡越时间随着半导体长度、Rashba自旋轨道耦合强度以及两铁磁电极中的磁化方向的夹角的变化而变化.
We study the characteristics of the spin-tunneling time and the transmission coefficient in a ferromagnetic/semiconductor/ ferromagnetic heterojunction with a δ tunnel barrier. The effects of the quantum size and Rashba spin-orbit coupling are discussed. It is shown that the existence of the tunnel barrier will reduce the magnitude of the transmission coefficient and the variation of the barrier strength will change the phase of the transmission coefficient. The oscillation frequency of the transmission coefficient increases with the increasing of the Rashba spin-orbit coupling. When the spin-dependent electron tunnels through the heterojunction, the tunneling time becomes longer with the length of the semiconductor increasing. The Rashba spin-orbit coupling also affects the spin-tunneling time.