位置:成果数据库 > 期刊 > 期刊详情页
中文事件抽取技术研究
  • ISSN号:1003-0077
  • 期刊名称:中文信息学报
  • 时间:0
  • 页码:221-229
  • 语言:中文
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]哈尔滨工业大学计算机学院信息检索研究室,黑龙江哈尔滨150001
  • 相关基金:国家自然科学基金资助项目(60575042,60675034);国家863资助项目(2006AA012145)
  • 相关项目:汉语语义角色标注方法研究
中文摘要:

事件抽取是信息抽取领域一个重要的研究方向,本文对事件抽取的两项关键技术——事件类别识别以及事件元素识别进行了深入研究。在事件类别识别阶段,本文采用了一种基于触发词扩展和二元分类相结合的方法;在事件元素识别阶段,本文采用了基于最大熵的多元分类的方法。这些方法很好的解决了事件抽取中训练实例正反例不平衡以及数据稀疏问题,取得了较好的系统性能。

英文摘要:

Event Extraction is an important research point in the area of Information Extraction. This paper makes an intensive study of the two stages of Chinese event extraction, namely event type recognition and event argument recognition. A novel method combining event trigger expansion and a binary classifier is presented in the step of event type recognition while in the step of argument recognition, one with multi class classification based on maximum entropy is introduced. The above methods solved the data unbalanced problem in training model and the data sparseness problem brought by the small set of training data effectively, and finally our event extraction system achieved a better performance.

同期刊论文项目
期刊论文 29 会议论文 12
同项目期刊论文
期刊信息
  • 《中文信息学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学技术协会
  • 主办单位:中国中文信息学会 中国科学院软件研究所
  • 主编:孙茂松
  • 地址:北京海淀中关村南四街4号中科院软件所
  • 邮编:100190
  • 邮箱:jcip@iscas.ac.cn
  • 电话:010-62562916
  • 国际标准刊号:ISSN:1003-0077
  • 国内统一刊号:ISSN:11-2325/N
  • 邮发代号:
  • 获奖情况:
  • 国内外数据库收录:
  • 日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:9136