Based on ranging intersection theory, a new method which is simple and easy to operate was proposed for data collection in the mine surface deformation monitoring with GPS-RTK centering rod measurements. It can fully eliminate the inevitable shaking error and the vertical deflection, and to some extent weaken the multipath effect on the estimates of coordinates in a relatively short period of time, using high-frequency observations. The results show that three-dimensional coordinates with a height accuracy better than 1 cm, horizontal accuracy better than 2-4 cm can be achieved through only 15-30 s continuous observation by 20 Hz high-frequency and effectively improve the measurement accuracy and efficiency of RTK, fully satisfying the high-speed and high-precision data acquisition in mine surface subsidence deformation monitoring.
Based on ranging intersection theory, a new method which is simple and easy to operate was proposed for data collection in the mine surface deformation monitoring with GPS-RTK centering rod measurements. It can fully eliminate the inevitable shaking error and the vertical deflection, and to some extent weaken the multipath effect on the estimates of coordinates in a relatively short period of time, using high-frequency observations. The results show that three-dimensional coordinates with a height accuracy better than 1 cm, horizontal accuracy better than 2-4 cm can be achieved through only 15-30 s continuous observation by 20 Hz high-frequency and effectively improve the measurement accuracy and efficiency of RTK, fully satisfying the high-speed and high-precision data acquisition in mine surface subsidence deformation monitoring.