位置:成果数据库 > 期刊 > 期刊详情页
基于局部回归模型的图像超分辨率重建
  • ISSN号:1001-9081
  • 期刊名称:《计算机应用》
  • 时间:0
  • 分类:TP391.41[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:南京邮电大学通信与信息工程学院,南京210003
  • 相关基金:国家自然科学基金青年基金资助项目(61501260); 江苏省自然科学基金资助项目(BK20130867,BK20140891); 江苏省高校自然科学基金资助项目(13KJB510020); 江苏省普通高校研究生科研创新计划项目(CXLX11_0406,CXLX12_0474)
中文摘要:

针对基于稀疏重建的图像超分辨率(SR)算法一般需要外部训练样本,重建质量取决于待重建图像与训练样本的相似度的问题,提出一种基于局部回归模型的图像超分辨率重建算法。利用局部图像结构会在不同的图像尺度对应位置重复出现的事实,建立从低到高分辨率图像块的非线性映射函数一阶近似模型用于超分辨率重建。其中,非线性映射函数的先验模型是直接对输入图像及其低频带图像的对应位样本块对通过字典学习的方法得到。重建图像块时利用图像中的非局部自相似性,对多个非局部自相似块分别应用一阶回归模型,加权综合得到高分辨率图像块。实验结果表明,该算法重建的图像与同样利用图像具有自相似性的相关超分辨率算法相比,峰值信噪比(PSNR)平均提高0.3~1.1 d B,主观重建效果亦有明显提高。

英文摘要:

Image Super-Resolution( SR) algorithms based on sparse reconstruction generally require external training samples. The shortcoming of these algorithms is that the reconstruction quality depends on the similarity between the image to be reconstructed and the training sample. In order to solve the problem,an image super-resolution reconstruction algorithm based on local regression model was proposed. Using the fact that the local image structure would repeat in the corresponding position of different image scales,a first-order approximation model of the nonlinear mapping function from low to high resolution image patches was built for super-resolution reconstruction. The prior model of the nonlinear mapping function was established by handling the in-place example pair of the input image and its low frequency band image with dictionary learning. During the reconstruction of the image block,the non-local self-similarity of image was used and the first-order regression model was applied to multiple non-local self-similarity patches respectively,the high-resolution image patch could be obtained through weighted summing. The experimental results show that,compared with other super-resolution algorithms which also make use of image self-similarity,the average Peak Signal-to-Noise Ratio( PSNR) of the reconstructed images of the proposed algorithm is increased by 0. 3 ~ 1. 1 d B,and the subjective reconstruction effect of the proposed algorithm is improved significantly as well.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术协会
  • 主办单位:四川省计算机学会中国科学院成都分院
  • 主编:张景中
  • 地址:成都市人民南路四段九号科分院计算所
  • 邮编:610041
  • 邮箱:xzh@joca.cn
  • 电话:028-85224283
  • 国际标准刊号:ISSN:1001-9081
  • 国内统一刊号:ISSN:51-1307/TP
  • 邮发代号:62-110
  • 获奖情况:
  • 全国优秀科技期刊一等奖,国家期刊奖提名奖,中国期刊方阵双奖期刊,中文核心期刊,中国科技核心期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:53679