位置:成果数据库 > 期刊 > 期刊详情页
Supervised polarimetric based on Fisher SAR classification method linear discriminant
  • ISSN号:1009-5896
  • 期刊名称:《电子与信息学报》
  • 时间:0
  • 分类:TP75[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]National Key Laboratory of Microwave Imaging Science and Technology, Institute of Electronics,Chinese Academy of Sciences, Beijing 100190, China, [2]Graduate University ofChinese Academy of Sciences, Beijing 100190, China)
  • 相关基金:Supported by ESA-MOST Dragon 2 Cooperation Programme (5344) ; the National High-Tech R&D Program (" 863" Pro- gram) (2011AA120401); the National Natural Science Foun- dation of China (60890071, 60890072)
中文摘要:

A supervised polarimetric SAR land cover classification method was proposed based on the Fisher linear discriminant.The feature parameters used in this classification method could be selected flexibly according to land covers to be classified.Polarimetric and texture feature parameters extracted from co-registered multifrequency and multi-temporal polarimetric SAR data could be combined together for classification use,without consideration of the dimension difference of each feature parameter and the joint probability density function of those parameters.Experimental result with AGRSAR L/C-band full polarimetric SAR data showed that a total classification accuracy of 94.33% was achieved by combining the polarimetric with texture feature parameters extracted from L/C dual band SAR data,demonstrating the effectiveness of this method.

英文摘要:

A supervised polarimetric SAR land cover classification method was proposed based on the Fisher linear discriminant. The feature parameters used in this classification method could be se- lected flexibly according to land covers to be classified. Polarimetric and texture feature parameters extracted from co-registered multifrequency and multi-temporal polarimetric SAR data could be com- bined together for classification use, without consideration of the dimension difference of each fea- ture parameter and the joint probability density function of those parameters. Experimental result with AGRSAR L/C-band full polarimetric SAR data showed that a total classification accuracy of 94. 33% was achieved by combining the polarimetric with texture feature parameters extracted from L/C dual band SAR data, demonstrating the effectiveness of this method.

同期刊论文项目
期刊论文 106 会议论文 72
期刊论文 131 会议论文 23 专利 1
同项目期刊论文
期刊信息
  • 《电子与信息学报》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院电子学研究所 国家自然科学基金委员会信息科学部
  • 主编:朱敏慧
  • 地址:北京市北四环西路19号
  • 邮编:100190
  • 邮箱:jeit@mail.ie.ac.cn
  • 电话:010-58887066
  • 国际标准刊号:ISSN:1009-5896
  • 国内统一刊号:ISSN:11-4494/TN
  • 邮发代号:2-179
  • 获奖情况:
  • 国内外数据库收录:
  • 荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:24739