位置:成果数据库 > 期刊 > 期刊详情页
基于SVM的图像低层特征与高层语义的关联
  • ISSN号:1001-3695
  • 期刊名称:《计算机应用研究》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]湘潭大学信息工程学院,湖南湘潭411105
  • 相关基金:国家自然科学基金资助项目(60234030);湖南省自然科学基金资助项目(02jjy2091)
中文摘要:

在基于内容的图像检索中,针对图像的低层可视特征与高层语义特征之间的鸿沟,提出了一种基于支持向量机(SVM)的语义关联方法。通过对图像低层特征的分析,提取了颜色和形状特征向量(221维),将它们作为支持向量机的输入向量,对图像类进行学习,建立图像低层特征与高层语义的关联,并应用于鸟类、花卉、海洋以及建筑物等几个典型的语义类别检索。实验结果表明,该方法可适应于不同用户的图像检索,并提高了检索性能。

英文摘要:

A new method for correlating image low-level feature with high-level semantic based on SVM is proposed, aiming at overcoming the considerable gap between them in the field of content-based image retrieval, Through analyzing the image low-level features, color and shape feature vectors are selected as SVM's input vectors. Then make study of image classes to build the correlation from image low-level features to high-level semantics. This semantic correlation method has been used in semantic retrieval, which concerns the following typical semantic categories: birds, flowers, sea and buildings. Experimental results demonstrate that the algorithm can adapt to the various users' image retrieval and improve the retrieval function.

同期刊论文项目
期刊论文 287 会议论文 77 获奖 2 著作 11
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049