为拓展小波理论在结构工程中的应用,提高结构计算精度,提出了以Daubechies条件小波Ritz法为基础的Daubechies条件小波有限元法。该法结合广义变分原理和拉格朗日乘子法构造修正泛函,根据修正泛函的驻值条件得到全域法求解方程矩阵。根据构件的边界条件,按左右边界对求解矩阵进行相应拆分,构建条件小波单元刚度矩阵,并依据公共节点位移相等原则形成总体刚度矩阵,由此解得各单元的小波基待定系数,即可进一步求解位移场函数、内力分布函数及荷载集度函数。以工程中常见的弹性拉压杆及平面弯曲梁为例,详细阐述了该方法的构造过程。并通过典型算例将Daubechies条件小波有限元法计算值与理论解进行了对比,结果表明:在弹性拉压杆算例中,位移、应力、载荷集度的相对误差均在1.22×10-3%以内;在平面弯曲梁算例中,挠度、弯矩、载荷集度的相对误差均在8.91×10-2%以内。