摘要:以双通多孔氧化铝(AAO)为模板用软印模法制作出硅胶(PDMS)纳米线团簇结构,用离子束溅射沉积法在硅胶纳米面条衬底上镀一层50nm的金膜,制成大面积、超高灵敏的SERS基底.以不同孔径的AAO为模板,制作出不同直径的纳米线.用罗丹明6G为探针分子,通过对不同直径纳米线形成的团簇SERS基底进行拉曼信号测量发现,所有SERS基底都显示出可观的拉曼信号增强效应,平均拉曼增强因子随着纳米线直径的增大而增大,最大的增强因子超过2×10^7.如此大的拉曼信号增强归因于大量纳米线间隙中的超强电磁增强效应.
A large-area low-cost and ultrasensitive surface-enhanced Raman scattering (SERS) substrate fabricated by soft-lithography and ion beam sputtering deposition is described. A batch nanofabrication method is developed to create PolyDiMethylSiloxane (PDMS) nanonoodles cluster structure by soft-lithography with bi- pass anodized aluminum oxide (AAO) membrane using as replication template. Deposited 50 nm Au film onto the cluster template, ultrasensitive SERS substrate is fabricated. Raman enhancement factors of different diam- eter nanonoodles cluster substrates, which replicated from different pore diameter AAO, are measured. The re- sults show that remarkable Raman enhancement is present for all the SERS substrates. The average enhance- ment factor increases with the increasing of the nanonoodle diameter in our experiments. A highest enhancement factor larger than 2 × 10^7 is obtained. The strong Raman enhancement is attributed to the existence of plenty nano-gaps constructed between the PDMS nanonoodles.