采用辛算法数值求解了一维立方五次方非线性Schrdinger方程,研究了不同非线性参数下非线性Schrdinger方程的动力学性质.数值结果表明,随着立方非线性参数的增加,系统经历了拟周期状态、混沌状态和周期状态,且在五次方项的调制下,呼吸子解可以退化为单孤子解.
We solve one-dimensional(1D) cubic and quintic nonlinear Schrdinger equations by the symplectic method.The dynamical property of the nonlinear Schrdinger equation is studied with using diffenent nonlinear coefficients.The results show that the system presents quasiperiodic solution,chaotic solution,and periodic solution with the cubic nonlinear coefficient increasing,and the breather solution reduced into a fundamental soliton solution under the modulation of the quintic nonlinear coefficient.