位置:成果数据库 > 期刊 > 期刊详情页
基于推荐机制的网格资源匹配算法研究
  • ISSN号:1000-1239
  • 期刊名称:《计算机研究与发展》
  • 时间:0
  • 分类:TP393[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]北京交通大学计算机与信息技术学院,北京100044
  • 相关基金:基金项目:国家“八六三”高技术研究发展发展计划基金项目(2006AA01A121)
中文摘要:

针对网格计算环境下,参与计算用户和计算资源规模日益庞大,用户申请资源过程中所需的资源匹配过程逐步复杂化和大规模化,提出了一种基于推荐机制的网格资源匹配算法.以往的网格计算资源的匹配和调度算法需要在调度计算时遍历所有网格资源,而改进的基于SVD(奇异值分解)的协同过滤算法考虑了用户行为相关性和资源使用频度的相关性,通过用户对资源项的使用历史记录建立用户对资源的满意度评分体系,利用推荐机制给出用户推荐资源集以到达资源匹配的效果.从一个新的角度给出了解决大量资源匹配的方法.

英文摘要:

Focusing on the problem of applying and matching resources under large-scale users and computing resources in grid environment, a kind of recommendation-based grid resource matching algorithm is presented. Many existing grid resource matching and scheduling algorithms have to search and compare every grid computing resource node without considering features of grid resources and users' behaviors, while recommendation system as widely used means in e-commerce could solve all of these two problems well. To utilize recommendation mechanism could pretreat information of users and resources by translating features of grid resources to eigenvectors of items in recommendation system and setting up a satisfaction grade system considering history records with features described in resources applying process that reflect the users' behaviors through the frequency users computed in resource nodes. Then, the authors improve SVD-based (singular value decomposition) collaborative filtering algorithm that can give users recommendation resource sets by computing the best approximate resource features to users' behavior features matrix. Especially, the grid resource matching algorithm could mine latent features from given data, efficiently overcome the extreme sparsity of user satisfaction grade data and make use of feedback information from resources scheduling. The problem of matching a mass of resources is solved in a novel way from a new perspective.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机研究与发展》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院计算技术研究所
  • 主编:徐志伟
  • 地址:北京市科学院南路6号中科院计算所
  • 邮编:100190
  • 邮箱:crad@ict.ac.cn
  • 电话:010-62620696 62600350
  • 国际标准刊号:ISSN:1000-1239
  • 国内统一刊号:ISSN:11-1777/TP
  • 邮发代号:2-654
  • 获奖情况:
  • 2001-2007百种中国杰出学术期刊,2008中国精品科...,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,荷兰文摘与引文数据库,美国工程索引,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:40349