采用计算流体力学(CFD)数值模拟方法对一种强弱射流型MILD富氧燃烧器的流动和燃烧特性进行了分析.采用有限速率/涡耗散(FR/EDM)模型预测了丙烷MILD富氧燃烧过程中烟气速度场、温度场、组分体积分数分布和烟气内循环流量比等宏观特征,并与已有实验数据进行比较,验证了模型的准确性.在此基础上深入分析了MILD富氧燃烧的化学反应区结构、湍流和化学反应时间尺度等微观特征.结果表明:强烈的烟气内循环充分地稀释并预热主反应区内的反应物,减缓了化学反应速率,从而降低了火焰峰值温度,揭示了强弱射流型MILD富氧燃烧的低氧温和燃烧特征.
Flow and combustion characteristics of a moderate & intense low oxygen dilution (MILD) oxy- fuel burner with strong/weak jets were numerically analyzed by computational fluid dynamics (CFD) method. A finite-rate/eddy-dissipation model (FR/EDM) was used to predict the flue gas velocity, tem- perature field, species field and internal flue gas recirculation ratio of propane MILD oxy-fuel combustion, and the model accuracy was verified by comparison with existing experimental data. On above basis, the structure of chemical reaction zone as well as turbulence and chemical timescales of MILD oxy-fuel combus- tion were further analyzed. Results show that the intensive internal flue gas recirculation adequately dilutes and preheats the reactants in the main reaction zone, slows down the chemical reaction rate and further reduces the peak flame temperature, revealing that the MILD oxy-fuel burner with strong/weak jets has the features of low oxygen concentrations and moderate chemical reactions.