位置:成果数据库 > 期刊 > 期刊详情页
融合显著性因子的行人纹理提取
  • ISSN号:1001-9081
  • 期刊名称:《计算机应用》
  • 时间:0
  • 分类:TP391.4[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]武汉大学电子信息学院,武汉430072
  • 相关基金:国家自然科学基金资助项目(41371342).
中文摘要:

针对基于纹理信息的行人特征提取算法中存在特征信息冗余度大,无法刻画人眼视觉敏感性的不足,提出一种融合人类视觉感知特性的基于显著性局部二值模式(SF-LBP)的行人纹理特征提取算法。该算法首先采用显著性计算方法提取感兴趣区域得到各部分的显著性因子;然后将显著性因子权值与行人纹理特征根据核函数相融合,生成基于SF-LBP算子的特征向量;接着统计不同区域的特征向量,形成特征直方图;最后结合自适应AdaBoost分类器构建实验平台进行实验。INRIA数据集中的实验结果显示,SF-LBP特征在检测准确率上比梯度直方图(HOG)特征、Haar特征高出2%~3%,达到97%,召回率达到90%,提高了2%左右,表明SF-LBP算子能够准确描述行人的纹理特征,提高行人检测系统的准确率。

英文摘要:

The algorithm of extracting pedestrian features based on texture information has the problems of redundant feature information and being unable to depict the human visual sensitivity, an algorithm named SF-LBP was proposed to extract pedestrian texture feature by Significant Local Binary Pattern which fuses the characteristics of human visual pedestrian system. Firstly, the algorithm calculated the significant factor in each region by saliency detection method. Then, it rebuilt the eigenvector of the image by significant factor weight and pedestrian texture feature, and generated the feature histogram according to local feature. Finally it integrated adaptive AdaBoost classifier to construct pedestrian detection system. The experimental results on INRIA database show that the SF-LBP feature achieves a detection rate of 97% and about 2% - 3% higher than HOG (Histogram of Oriented Gradients) feature and Haar feature. It reaches recall rate of 90% and 2% higher than other features. It indicates that the SF-LBP feature can effectively describe the texture characteristics of pedestrians, and improve the accuracy of the pedestrian detection system.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术协会
  • 主办单位:四川省计算机学会中国科学院成都分院
  • 主编:张景中
  • 地址:成都市人民南路四段九号科分院计算所
  • 邮编:610041
  • 邮箱:xzh@joca.cn
  • 电话:028-85224283
  • 国际标准刊号:ISSN:1001-9081
  • 国内统一刊号:ISSN:51-1307/TP
  • 邮发代号:62-110
  • 获奖情况:
  • 全国优秀科技期刊一等奖,国家期刊奖提名奖,中国期刊方阵双奖期刊,中文核心期刊,中国科技核心期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:53679