To study the distribution characteristics and variation regularity of the temperature field during the process of seepage freezing, a simulated-freezing test with seepage of Xuzhou sand was completed by using a model test developed in-house equipment. By means of three group freezing tests with different seepage velocities, we discovered the phenomenon of the asymmetry of the temperature field under the influence of seepage. The temperature upstream was obviously higher than that downstream. The temperature gradient upstream was also steeper than that downstream. With a higher seepage velocity,the asymmetry of the temperature field is more pronounced. The asymmetry for the interface temperature profile is more strongly manifest than for the main surface temperature profile. The cryogenic barrier section is somewhat 'heartshaped'.With the increasing velocity of the seepage flow, the cooling rate of the soil decreases. It takes much time to reach the equilibrium state of the soil mass. In our study, seepage flow velocities of 0 m/d, 7.5 m/d, and 15 m/d showed the soilcooling rate of 4.35 °C/h, 4.96 °C/h, and 1.72 °C/h, respectively.
To study the distribution characteristics and variation regularity of the temperature field during the process of seepage freezing, a simulated-freezing test with seepage of Xuzhou sand was completed by using a model test developed in-house equipment. By means of three group freezing tests with different seepage velocities, we discovered the phenomenon of the asymmetry of the temperature field under the influence of seepage. The temperature upstream was obviously higher than that downstream. The temperature gradient upstream was also steeper than that downstream. With a higher seepage velocity, the asymmetry of the temperature field is more pronounced. The asymmetry for the interface temperature profile is more strongly manifest than for the main surface temperature profile. The cryogenic barrier section is somewhat 'heart shaped'. With the increasing velocity of the seepage flow, the cooling rate of the soil decreases. It takes much time to reach the equilibrium state of the soil mass. In our study, seepage flow velocities of 0 m/d, 7.5 m/d, and 15 m/d showed the soil cooling rate of 4.35 degrees C/h, 4.96 degrees C/h, and 1.72 degrees C/h, respectively.