位置:成果数据库 > 期刊 > 期刊详情页
基于TSB-HMM模型的雷达高分辨距离像目标识别方法
  • ISSN号:1009-5896
  • 期刊名称:《电子与信息学报》
  • 时间:0
  • 分类:TN957.51[电子电信—信号与信息处理;电子电信—信息与通信工程]
  • 作者机构:[1]西安电子科技大学雷达信号处理国家重点实验室,西安710071
  • 相关基金:国家自然科学基金(61271024,61201292,61201283); 新世纪优秀人才支持计划(NCET-09-09-0630); 全国优秀博士学位论文作者专项资金(FANEDD201156); 中央高校基本科研业务费专项资金联合资助课题
中文摘要:

针对雷达高分辨距离像(HRRP)的识别问题,该文提出了一种基于时域特征的截断Stick-Breaking过程隐马尔可夫模型(TSB-HMM),并建立了基于TSB-HMM模型的分层识别算法,利用TSB-HMM模型结合时域特征和功率谱特征对HRRP进行分层识别。实测数据的实验结果表明,该方法是一种有效的雷达HRRP识别方法,分层识别的算法可极大提高目标的平均识别率。特别是在训练样本数极少的情况下,TSB-HMM模型仍能获得较好的识别性能。

英文摘要:

To improve the performance of radar High-Resolution Range Profile(HRRP) target recognition,a new Truncated Stick-Breaking Hidden Markov Model(TSB-HMM) based on time domain feature is proposed.Moreover,a hierarchical classification scheme based on TSB-HMM is employed,which utilizes both time domain feature and power spectral density feature of HRRPs for hierarchical recognition.Experimental results based on measured data show that the TSB-HMM is an effective method for radar HRRP recognition,and the hierarchical classification scheme can largely enhance the average recognition rate.Furthermore,the proposed method can obtain satisfactory recognition performances even with very limited training data.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《电子与信息学报》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院电子学研究所 国家自然科学基金委员会信息科学部
  • 主编:朱敏慧
  • 地址:北京市北四环西路19号
  • 邮编:100190
  • 邮箱:jeit@mail.ie.ac.cn
  • 电话:010-58887066
  • 国际标准刊号:ISSN:1009-5896
  • 国内统一刊号:ISSN:11-4494/TN
  • 邮发代号:2-179
  • 获奖情况:
  • 国内外数据库收录:
  • 荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:24739