位置:成果数据库 > 期刊 > 期刊详情页
基于非负矩阵分解新的人脸识别方法
  • ISSN号:1004-731X
  • 期刊名称:《系统仿真学报》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]南京林业大学信息科学技术学院,南京210037, [2]南京理工大学计算机系,南京210094
  • 相关基金:国家自然科学基金资助项目(60472060);江苏省高校自然基金项目(06KJD520085);南京林业大学人才基金资助项目(2002-10).
中文摘要:

非负矩阵分解是一个新的特征提取方法,基于非矩阵分解的理论,提出了具有正交性的投影轴的计算方法和具有统计不相关性的投影轴的计算方法。与原非负矩阵分解方法,提出的方法在某种程度上是降低了特征矢量之间的统计相关性,并且提高识别率。通过在ORL人脸库和YALE人脸库上进行实验,结果表明提出的两种特征提取方法在识别率方面整体上好于原非负矩阵分解特征提取(NMF)方法,甚至超过主成分分析(PCA)法。

英文摘要:

Non-negative matrix factorization (NMF) is a new feature extraction method. Based on the Non-negative matrix factorization (NMF), a new algorithm of orthogonal projection axis and a new algorithm of statistically uncorrelated projection axis for feature extraction were proposed, Compared with original NMF method, the proposed methods are better in terms of reducing or eliminating the statistical correlation between features and improving recognition rate. The experimental results on Olivetti Research Laboratory (ORL) face database and YALE face database show that the new methods are better than original NMF in terms of recognition rate and even outperform PCA.

同期刊论文项目
期刊论文 184 会议论文 10 获奖 6 著作 1
同项目期刊论文
期刊信息
  • 《系统仿真学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国航天科工集团公司
  • 主办单位:北京仿真中心 中国仿真学会
  • 主编:李伯虎
  • 地址:北京市海淀区永定路50号院
  • 邮编:100039
  • 邮箱:simu-xb@vip.sina.com
  • 电话:010-88527147
  • 国际标准刊号:ISSN:1004-731X
  • 国内统一刊号:ISSN:11-3092/V
  • 邮发代号:82-9
  • 获奖情况:
  • 国内外数据库收录:
  • 美国化学文摘(网络版),荷兰文摘与引文数据库,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:51729