位置:成果数据库 > 期刊 > 期刊详情页
A membrane-inspired algorithm with a memory mechanism for knapsack problems
  • ISSN号:0529-6579
  • 期刊名称:《中山大学学报:自然科学版》
  • 时间:0
  • 分类:TP301[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]Key Laboratory of Image Processing and Intelligent Control, School of Automation, Huazhong University of Science and Technology, Wuhan 430074, China, [2]The Logistics Research Center, Nankai University, Tianjin 300071, China
  • 相关基金:Project supported by the National Natural Science Foundation of China (Nos. 61033003, 91130034, 61100145, 60903105, and 61272071), the PhD Programs Foundation of the Ministry of Education of China (Nos. 20100142110072 and 2012014213008), and the Natural Science Foundation of Hubei Province, China (No. 2011CDA027)
中文摘要:

Membrane algorithms are a class of distributed and parallel algorithms inspired by the structure and behavior of living cells. Many attractive features of living cells have already been abstracted as operators to improve the performance of algorithms. In this work, inspired by the function of biological neuron cells storing information, we consider a memory mechanism by introducing memory modules into a membrane algorithm. The framework of the algorithm consists of two kinds of modules (computation modules and memory modules), both of which are arranged in a ring neighborhood topology. They can store and process information, and exchange information with each other. We test our method on a knapsack problem to demonstrate its feasibility and effectiveness. During the process of approaching the optimum solution, feasible solutions are evolved by rewriting rules in each module, and the information transfers according to directions defined by communication rules. Simulation results showed that the performance of membrane algorithms with memory cells is superior to that of algorithms without memory cells for solving a knapsack problem. Furthermore, the memory mechanism can prevent premature convergence and increase the possibility of finding a global solution.

英文摘要:

Membrane algorithms are a class of distributed and parallel algorithms inspired by the structure and behavior of living cells. Many attractive features of living cells have already been abstracted as operators to improve the performance of algorithms. In this work, inspired by the function of biological neuron cells storing information, we consider a memory mechanism by in- troducing memory modules into a membrane algorithm. The framework of the algorithm consists of two kinds of modules (computation modules and memory modules), both of which are arranged in a ring neighborhood topology. They can store and process information, and exchange information with each other. We test our method on a knapsack problem to demonstrate its feasibility and effectiveness. During the process of approaching the optimum solution, feasible solutions are evolved by rewriting rules in each module, and the information transfers according to directions defined by communication rules. Simulation results showed that the performance of membrane algorithms with memory cells is superior to that of algorithms without memory cells for solving a knapsack problem. Furthermore, the memory mechanism can prevent premature convergence and increase the possibility of finding a global solution.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《中山大学学报:自然科学版》
  • 北大核心期刊(2011版)
  • 主管单位:国家教育部
  • 主办单位:中山大学
  • 主编:王建华
  • 地址:广州市新港西路135号
  • 邮编:510275
  • 邮箱:xuebaozr@mail.sysn.edu.cn
  • 电话:020-84111990
  • 国际标准刊号:ISSN:0529-6579
  • 国内统一刊号:ISSN:44-1241/N
  • 邮发代号:46-15
  • 获奖情况:
  • 全国优秀高等学校自然科学学报及教育部优秀科技期...,广东省优秀科学技术期刊一等奖,《中文核心期刊要目总览》综合性科技类核心期刊,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),英国农业与生物科学研究中心文摘,德国数学文摘,荷兰文摘与引文数据库,美国剑桥科学文摘,英国动物学记录,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),英国英国皇家化学学会文摘,中国北大核心期刊(2000版)
  • 被引量:18509