位置:成果数据库 > 期刊 > 期刊详情页
混沌通信系统中非线性信道的自适应组合神经网络均衡
  • 期刊名称:物理学报, 2008, 57 (7): 13996-4006
  • 时间:0
  • 分类:TN914.3[电子电信—通信与信息系统;电子电信—信息与通信工程] TN911.5[电子电信—通信与信息系统;电子电信—信息与通信工程]
  • 作者机构:[1]西南交通大学信号与信息处理四川省重点实验室,成都610031
  • 相关基金:国家自然科学基金(批准号:60572027)和教育部新世纪优秀人才支持计划(批准号:NCET-05-0794)资助的课题.
  • 相关项目:自适应多项式滤波器的新结构及其应用研究
中文摘要:

针对混沌通信系统的非线性信道干扰问题,基于混沌信号重构理论和函数型连接神经网络理论,提出了一种横向滤波器与函数型连接神经网络组合(combination of transversal filter and functional link neural network,CFFLNN)的自适应非线性信道均衡器,并给出基于低复杂度归一化最小均方(NLMS)的自适应算法,并对该均衡器的稳定性以及收敛条件进行了分析.该非线性自适应均衡器充分利用了横向滤波器的快速收敛,以及函数型连接神经网络通过增大输入空间提高非线性逼近能力的特点,进一步提高均衡器的收敛速度和降低稳态误差.仿真研究表明:所提出的非线性自适应均衡器能够有效地消除线性和非线性信道干扰,均衡器输出信号能反映出混沌信号的特性,具有良好的抗干扰性能;且该均衡器的结构简单,收敛稳定性较好,易于工程实现.

英文摘要:

For nonlinear channel distortions of chaos-based communication systems, based on the analysis of the theory of chaotic signal reconstruction and the characteristics of transversal filter and functional link neural network (FLNN), a novel nonlinear adaptive equalizer with the architecture of combination of transversal filter and functional link neural network (CFFLNN) is proposed in this paper. The novel nonlinear equalizer fully utilizes faster convergence characteristics of transversal filter and the nonlinear approximation capability of FLNN by function expansion due to enhanced input space. Furthermore, the performance of the novel nonlinear adaptive equalizer is also improved. Finally, the proposed equalizer is designed and its adaptive algorithm is deduced by the low complexity normalized least mean square (NLMS) method. And an analysis of stability and convergence for the derived algorithm is provided. To illustrate the analysis, results obtained from the computer simulation are also provided for both linear and nonlinear channels in chaos-based communication system.

同期刊论文项目
同项目期刊论文