设彤是维数大于2的复Hilbert空间,B(H)表示H上所有有界线性算子构成的代数。如果对所有的A,B∈.B(H)且A^*B=AB^*=0,有Ф(A)^*B+A^*Ф(B)=Ф(A)B^*+AФ(B)^*=0,则称Ф是B(H)上的正交可导线性映射。本文的结论是B(H)上的正交可导线性映射是广义内导子。
Let H be a complex Hilbert space with dim H〉 2, B(H) denote the algebra of all linear bounded operators on H. We say that a linear mapping Ф from B(H) into B(H) is an orthogonal derivable linear mapping if Ф ( A ) ^* B + A^*Ф (B) = (A) B^* + AФ ( B)^* = 0 for any A, B∈ B(H) with A^* B = AB^* = O. Every orthogonal derivable linear mapping on B(H) is a generalized inner derivation.