位置:成果数据库 > 期刊 > 期刊详情页
量子遗传算法在目标分配上的应用
  • ISSN号:2095-3844
  • 期刊名称:《武汉理工大学学报:交通科学与工程版》
  • 时间:0
  • 分类:TB115[理学—数学;理学—应用数学;一般工业技术]
  • 作者机构:[1]海军工程大学理学院,湖北武汉430033
  • 相关基金:国家自然科学基金资助项目(70471031).
中文摘要:

量子遗传算法是量子计算和遗传算法相结合的产物,量子遗传算法将量子比特和量子门表示引入到遗传算法中,具有比遗传算法更好的搜索效率和收敛性.目标分配问题是一种典型的NP难问题,传统的方法在求解此问题时很容易陷入局部最优.本文利用量子遗传算有效地解决了目标分配最优化的问题,数值模拟表明量子遗传算法在该类问题中具有效性和可行性.

英文摘要:

Quantum genetic algorithm (QGA) is based on quantum computation and genetic algorithm. QGA has better search ability and quicker convergence speed since it introduce qubit and quantum rotation gate into GA. object assignment problem is a typical NP hard problem, however, the solution of Goal distribution is not satisfying usually. For example it may be stuck at a local optimum. With the powerful searching ability of QGA, object assignment problem can be solved. The numerical simulation shows that QGA is efficient and practical in this field. quantum genetic algorithm; object assignment problem

同期刊论文项目
同项目期刊论文
期刊信息
  • 《武汉理工大学学报:交通科学与工程版》
  • 中国科技核心期刊
  • 主管单位:国家教育部
  • 主办单位:武汉理工大学
  • 主编:骆奇峰
  • 地址:武汉市武昌区和平大道1178号89信箱
  • 邮编:430063
  • 邮箱:jwuttse@whut.edu.cn
  • 电话:027-86538436
  • 国际标准刊号:ISSN:2095-3844
  • 国内统一刊号:ISSN:42-1382/U
  • 邮发代号:38-148
  • 获奖情况:
  • 1997年全国优秀科技期刊,1995年全国自然科学优秀学报,1999年全国高校优秀学报及教育部优秀科技期刊,2010年中国高校优秀科技期刊,2010年中国科技论文在线优秀期刊二等奖,2008年RCCSE中国权威学术期刊,湖北省优秀期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,荷兰文摘与引文数据库,美国剑桥科学文摘,中国中国科技核心期刊
  • 被引量:13741