采用耦合的水平集-体积分数法(CLSVOF)对双液滴连续撞击恒定壁温壁面上的热液膜的流动和换热特性进行了数值模拟及分析,得到了双液滴撞击热液膜后形态演变的过程。分析了液滴垂直间距、撞击速度、液膜厚度以及液滴直径对双液滴撞击液膜后的流动与传热特性的影响,结果显示,壁面平均热流密度随液滴撞击速度的增大而增大,液滴垂直间距、液膜厚度和液滴直径对平均热流密度的影响较小,但会对热流密度在撞击区域和交界区的分布产生重要影响。
A coupled level set and volume of fluid (CLS-VOF) method is applied to simulate the process of double droplets which continuously impact on a hot liquid film on a wall of constant temperature, and the evolution processes after the double droplets impinge on the hot flat liquid film are studied. Influences of vertical spacing between the two droplets, impact velocity, film thickness and droplet diameter on the flow and heat transfer characteristics are discussed. It is found that the average heat flux density of the wall increases with the rise of impact velocity. The influences of vertical spacing between the two droplets, droplet diameter, and liquid film thickness on the average heat flux density are small, but they have an important effect on the distribution of heat flow density in the impact area and the border area.