位置:成果数据库 > 期刊 > 期刊详情页
基于PCA的社团结构谱聚类改进算法
  • ISSN号:1000-7024
  • 期刊名称:《计算机工程与设计》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]上海交通大学电子与电气工程学院,上海200240, [2]上海交通大学信息安全工程学院,上海200240
  • 相关基金:国家自然科学基金项目(61271316、61071152);国家973重点基础研究发展计划基金项目(2010CB731403、2010CB731406、2013CB329605);国家十二五科技支撑计划基金项目(2012BAH38 B04)
中文摘要:

为了分析复杂网络和复杂系统的结构和功能特性,提出一种基于谱聚类和主成分分析(principle component analysis,PCA)的网络社团结构检测算法.利用主成分分析方法分析网络中社团结构的拓扑特点,通过压缩网络数据获得网络主要信息,提出了用于确定传统谱聚类中特征向量个数的方法,并在此基础上改进了谱聚类算法.该算法应用于海豚网络和足球网络等网络实例.实验结果表明,该算法可以根据网络结构动态获得特征向量个数,社团划分结果可行有效.

英文摘要:

To reveal and analyze the structural and functional properties in complex networks and systems,a method based on spectral analysis and principle component analysis is proposed to detect community structure.By analyzing the topology of network with the principle component analysis,the major information of the network is extracted from adjacency matrix of network.The Major information decides the correct number of eigenvectors in spectral method and then the improved spectral method based on PCA is established.Finally,the proposed method is applied to the dolphin social network and the football network,and the results demonstrate the performances of the method.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程与设计》
  • 北大核心期刊(2011版)
  • 主管单位:中国航天科工集团
  • 主办单位:中国航天科工集团二院706所
  • 主编:汤铭瑞
  • 地址:北京142信箱37分箱
  • 邮编:100854
  • 邮箱:ced@china-ced.com
  • 电话:010-68389884
  • 国际标准刊号:ISSN:1000-7024
  • 国内统一刊号:ISSN:11-1775/TP
  • 邮发代号:82-425
  • 获奖情况:
  • 中国科学引文数据库来源期刊,中国学术期刊综合评价数据库来源期刊,中国科技论文统计与分析用期刊
  • 国内外数据库收录:
  • 波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:45616