位置:成果数据库 > 期刊 > 期刊详情页
一种基于Fisher准则的有监督表情识别算法
  • ISSN号:1001-3695
  • 期刊名称:《计算机应用研究》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]西北工业大学自动化学院,西安710072
  • 相关基金:国家自然科学基金资助项目(10702065); 陕西省自然科学基金资助项目(2005F45)
中文摘要:

在分析LPP算法存在的不足后,提出了一种新的基于Fisher准则的有监督保局投影表情识别算法,即FSLPP。该算法通过可调因子有效地结合人脸局部流形的结构信息和样本的类别信息,对表情图像序列提取其Gabor特征后采用FSLPP算法获取低维表情特征序列,并由SVM分类器估算识别率。在JAFFE人脸表情库对该算法进行了测试,结果表明,与FLD、LPP等方法相比,该方法具有较好的识别率。

英文摘要:

After analyzing the shortcomings of LPP algorithm,this paper proposed a new expression image feature extraction and recognition method based on supervised locality preserving projections and Fisher criterion( FSLPP) . The algorithm effectively integrated the face manifold local structure information with the labels’information by adjustable factor. Extracting human facial expression characteristics by Gabor wavelet,extracted the low-dimensional feature of expression for recognition by FSLPP algorithm,used the support vector machine ( SVM) algorithm to construct classifiers. The proposed method was tested and evaluated using the JAFFE face expression database. Experimental results show that FSLPP is more powerful than Fisherface and Laplacianface for expression feature extraction and recognition.

同期刊论文项目
期刊论文 30 会议论文 2
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049