位置:成果数据库 > 期刊 > 期刊详情页
规则与数据驱动的层流冷却过程带钢卷取温度模型
  • ISSN号:0254-4156
  • 期刊名称:《自动化学报》
  • 时间:0
  • 分类:TP[自动化与计算机技术]
  • 作者机构:[1]沈阳建筑大学信息与控制工程学院,110168, [2]东北大学自动化研究中心,沈阳110189, [3]流程工业综合自动化国家重点实验室,沈阳110189
  • 相关基金:国家重点基础研究发展计划(973计划)(2009CB320601),国家自然科学基金(61104084),创新引智计划(111计划)(B08015),住建部科学技术计划项目(2012-K7-19)资助
中文摘要:

针对现有层流冷却过程带钢温度模型缺乏换热系数、带钢定位、带钢卷取温度计算的有效方法这一问题,提出了由冷却单元阀门开闭状态模型、带钢冷却单元定位模型、不同换热方式下的带钢温度模型组成的带钢卷取温度动态模型,将案例推理、规则推理、神经网络等相结合,提出了规则与数据驱动的模型参数智能辨识方法.采用某钢厂实际生产运行数据对所提出的带钢卷取温度动态模型进行了实验研究,实验结果表明奉文提出的方法能够有效提高带钢卷取温度模型的精度.

英文摘要:

The existing cooling process models lack the methods to compute the heat transfer parameter and the position that strip reaches and cannot be used to compute the strip coiling temperature directly. So a strip coiling temperature model is proposed, which consists of the status of cooling unit valves calculating model, the strip segment tracking model, and the top surface temperature model under different heat transfer conditions. What is more, a rule and data driven hybrid intelligent identification algorithm is developed combining the case-based reasoning, rule-reasoning with the neural network. The tests using real industrial data of a steel plant have been conducted and indicated that the proposed strip coiling temperature model has made a great contribution to the prediction precision of the strip coiling temperature during the laminar cooling process.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《自动化学报》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国自动化学会 中国科学院自动化研究所
  • 主编:王飞跃
  • 地址:北京东黄城根北街16号
  • 邮编:100717
  • 邮箱:aas@ia.ac.cn
  • 电话:010-64019820
  • 国际标准刊号:ISSN:0254-4156
  • 国内统一刊号:ISSN:11-2109/TP
  • 邮发代号:2-180
  • 获奖情况:
  • 1997年获全国优秀期刊奖,1985、1990、1996、2000年获中国科学院优秀期刊二等奖,2002年获国家期刊奖
  • 国内外数据库收录:
  • 美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:27550