分享一小功能的全部功能的唯一问题被学习。由 Picard 的定理,我们证明了那为二先验全部功能 f (z)和 g (z),积极整数 n9 ,和(z)(不相等 eaqual 到零)是与 f (z)和 g (z)有关的普通小功能,如果 f n (z)( f (z)-1)f'(z)和 gn (z)( g'z )-1)g'(z)在厘米正在数复合的地方,分享一(z)厘米,那么 g (z) f (z)。这是毒牙和 hong 的定理的一个扩大版本[毒牙 ML, hong W,为有关微分多项式的全部功能的一条 unicity 定理,印度纯应用数学的杂志, 2001, 32 (9 ) :1343-1348 ] 。
The uniqueness problem of entire functions sharing one small function was studied. By Picard's Theorem, we proved that for two transcendental entire functionsf(z) and g(z), a positive integer n≥9, and a(z) (not identically eaqual to zero) being a common small function related to f(z) and g(z), iffn(z)(f(z)-1)f'(z) and gn(z)(g(z)-1)g'(z) share a(z) ca, where CM is counting multiplicity, then g(z) ≡f(z). This is an extended version of Fang and Hong's theorem [ Fang ML, Hong W, A unicity theorem for entire functions concerning differential polynomials, Journal of Indian Pure Applied Mathematics, 2001, 32 (9): 1343-1348].