位置:成果数据库 > 期刊 > 期刊详情页
路径张量分解的知识图谱推理算法
  • ISSN号:1003-6059
  • 期刊名称:《模式识别与人工智能》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]福州大学数学与计算机科学学院,福州350116, [2]福州大学福建省网络计算与智能信息处理重点实验室,福州350116, [3]厦门理工学院计算机与信息工程学院,厦门361024
  • 相关基金:国家自然科学基金项目青年基金项目(No.61300105)、福建省自然科学基金项目(No.2017J01755)、福建省引导性项目(No.2016Y0060,2014Y0005)、福建省教育厅科技项目(No.JA15082,JA14243)、福建省教育厅中青年教师教育科研项目(No.JAT160077)、厦门留学人员科研项目(No.XRS201631401)资助
中文摘要:

现有张量分解技术在用于知识图谱学习和推理过程中时,只考虑知识图谱中实体与实体间的直接关系,忽略知识图谱图形结构的特点.因此,文中提出基于路径张量分解的知识图谱推理算法(PRESCAL),利用路径排列算法(PRA)获得知识图谱中各实体对间的关系路径.然后对实体对间的关系路径进行张量分解,并在优化更新过程中采用交替最小二乘法.实验表明,在路径问题回答任务和实体链接预测任务中,PRESCAL可以取得较好的预测准确率.

英文摘要:

In the existing tensor factorization techniques used in knowledge graph learning and reasoning, only direct links between entities are taken into account. However, the graph structure of knowledge graph is ignored. In this paper, knowledge graph reasoning based on paths of tensor factorization is proposed. The path ranking algorithm(PRA) is employed to find all paths connecting the source and target nodes in a relation instances. Then, those paths are decomposed by tensor factorization. And the entities and relations are optimized by the alternating least squares method. Experimental resuhs on two large-scale knowledge graphs show the algorithm achieves significant and consistent improvement on tasks of entities linking prediction and paths question answering and its prediction accuracy outperforms that of other related models.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《模式识别与人工智能》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会 中国自动化学会
  • 主办单位:国家智能计算机研究开发中心 中国科学院合肥智能机械研究所
  • 主编:郑南宁
  • 地址:安徽省合肥市蜀山湖路350号中国科学院合肥智能机械研究所
  • 邮编:230031
  • 邮箱:bjb@iim.cas.cn
  • 电话:0551-5591176
  • 国际标准刊号:ISSN:1003-6059
  • 国内统一刊号:ISSN:34-1089/TP
  • 邮发代号:26-69
  • 获奖情况:
  • 国内外数据库收录:
  • 被引量:10169