位置:成果数据库 > 期刊 > 期刊详情页
大型立磨状态监测数据库管理系统研究与开发
  • ISSN号:1006-2343
  • 期刊名称:《机械设计与研究》
  • 时间:0
  • 分类:TH218[机械工程—机械制造及自动化] TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]郑州轻工业学院机电工程学院,河南郑州450002, [2]中信重工机械股份有限公司,河南洛阳471039
  • 相关基金:国家自然科学基金(51205371,51405453)及国家科技支撑计划(2015BAF32804)资助项目;河南省高校科技创新人才支持计划项目(17HASTIT028);郑卅『轻工业学院博士启动基金项目(2013BSJJ033)
中文摘要:

大型立磨是对矿渣、煤渣等研磨加工的关键大型机械设备,状态监测和故障诊断系统是设备安全运行的重要保障,但是立磨设备系统、结构复杂,其状态有关的本征数据量大且关系复杂,而且配置有数量庞大的传感器,建立支撑状态监测和故障诊断的高效稳定的数据管理系统非常重要。从立磨状态监测和故障诊断系统数据管理中数据流、信息流、状态监测流程的需求分析出发,建立了整个系统的功能模型和E-R模型;实现了大型立磨本征数据库、专家知识库、设备及用户信息库、历史数据库的设计;针对海量数据查询效率低的问题,根据信号采集时间和访问频繁程度采用了对历史数据的分级缓存机制、分表分区、索引优化、存储过程及分页显示等技术。基于C#语言、SQL server数据库开发了大型立磨状态监测及故障诊断数据库管理系统。最后,实例验证表明:该系统实现了对大型立磨产业数据的综合管理,同时提高了相关数据资源利用率及数据的查询效率;为大型立磨状态监测及故障诊断提供了高效稳定的数据支持。

英文摘要:

The large-scale vertical mill is one of key large-scale mechanical equipment for slag and cinder. The condition monitoring and fault diagnosis system is an important guarantee for the safe operation of the equipment. However, vertical mill equipment system is complex and its state- related intrinsic data is large. The systems and structures of the vertical mill are complex, and the number of the intrinsic characters relating to the conditions is very large, and these characters have complex interrelationships. Especially, the vertical mill configures a large number of sensors, the establishment of support status monitoring and fault diagnosis of highly efficient and stable data management system is very important. In this paper, the functional model and E-R model of the whole system are established from the requirements analysis of the data flow, information flow and condition monitoring proeess in the data management of the vertical mill monitoring and fault diagnosis system. The large- scale vertical mill intrinsic database and expert knowledge base, the equipment and the user information base, and the historical database design are realized ; In view of the massive data inquiry efficiency low question, according to the signal gathering time and the visit frequency, the technologies to the historical data, such as the hierarchical caching mechanism, minute table partition, the index optimization, the stored procedure and the paging display,are adopted. Based on the C # language and SQL server database, a large-scale vertical mill status monitoring and fault diagnosis database management system is developed. -dinally, an example shows that the system realizes the management of large-scale vertical mill industry data, improves the utilization rate of relevant data resources and the query efficiency of data, and provides efficient and stable data support for large-scale vertical mill status monitoring and fault diagnosis.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《机械设计与研究》
  • 北大核心期刊(2011版)
  • 主管单位:上海市科学技术协会
  • 主办单位:上海交通大学
  • 主编:邹慧君
  • 地址:上海市华山路1954号(上海交通大学内)
  • 邮编:200030
  • 邮箱:jofmdr@126.com
  • 电话:021-62932023
  • 国际标准刊号:ISSN:1006-2343
  • 国内统一刊号:ISSN:31-1382/TH
  • 邮发代号:4-577
  • 获奖情况:
  • 全国中文核心期刊,中国科技论文统计用刊
  • 国内外数据库收录:
  • 荷兰文摘与引文数据库,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:9239