位置:成果数据库 > 期刊 > 期刊详情页
基于fMRI脑机接口的数据分类方法的研究
  • ISSN号:1007-9432
  • 期刊名称:《太原理工大学学报》
  • 时间:0
  • 分类:TP18[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]太原理工大学计算机科学与技术学院,山西晋中030619, [2]山西职工医学院信息中心,山西晋中030619
  • 相关基金:国家自然科学基金资助项目:抑郁症fMRI数据分析方法及辅助诊断治疗模型研究(61170136),多模态脑功能复杂网络分析方法及应用研究(61373101); 山西省软科学研究资助项目(2016041035-1)
中文摘要:

为了解决脑机接口中功能磁共振成像(functional magnetic resonance imaging,fMRI)信号的数据分类问题,提出了使用后顶叶皮层进行特征选择的支持向量机分类方法。首先通过核磁设备采集数据,对数据预处理后,将后顶叶皮层的体素选择为特征,然后把血氧水平依赖(blood oxygen level dependent,BOLD)值的峰值和累积变化作为特征提取,最后使用支持向量机进行数据的分类。实验表明,选择后顶叶皮层作为特征是可行的;使用BOLD峰值的分类精度要高于使用BOLD累积变化的分类精度。

英文摘要:

To solve the data classification of the functional magnetic resonance imaging(fMRI) signals in the brain-compute interface, the classification method of support vector machine(SVM) using posterior parietal cortex(PPC) as feature selection was presented. First, the data were acquired by the nuclear magnetic device. Next,the data were preprocessed, the voxels of PPC were selected as features, then the peak values and cumulative values of BOLD(blood oxygen level dependent) were selected as the feature extraction. Finally, SVM was used to classify data. The experiment has shown it is viable to select PPC as feature and the classification accuracy using peak value is higher than the classification accuracy using cumulative value.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《太原理工大学学报》
  • 中国科技核心期刊
  • 主管单位:山西省教育厅
  • 主办单位:太原理工大学
  • 主编:黄庆学
  • 地址:太原市迎泽西大街79号
  • 邮编:030024
  • 邮箱:tyutxb@tyut.edu.cn
  • 电话:0351-6014376 6014556
  • 国际标准刊号:ISSN:1007-9432
  • 国内统一刊号:ISSN:14-1220/N
  • 邮发代号:22-27
  • 获奖情况:
  • 全国高校学报优秀期刊一等奖、二等奖,国家双效期刊奖,华北十佳期刊优秀奖,山西省一级期刊奖,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:9375